Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет bioRxiv Subject Collection: Neuroscience ([info]syn_bx_neuro)
@ 2025-02-17 11:35:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
3BTRON: A Blood-Brain Barrier Recognition Network
The blood-brain barrier (BBB) plays a crucial role in maintaining brain homeostasis. During ageing, the BBB undergoes structural alterations. Electron microscopy (EM) is the gold standard for studying the structural alterations of the brain vasculature. However, analysis of EM images is time-intensive and can be prone to selection bias, limiting our understanding of the structural effect of ageing on the BBB. Here, we introduce 3BTRON, a deep learning framework for the automated analysis of the BBB architecture (the morphology, structure, and texture of its various components) in EM images. Using age as a readout, we trained and validated our model on a unique dataset (n = 359). We show that the proposed model could confidently identify the BBB architecture of aged mouse brains from young mouse brains across three different brain regions, achieving a sensitivity of 77.8% and specificity of 80.0% post-stratification when predicting on unseen data. Additionally, feature importance methods revealed the spatial features of each image that contributed most to the predictions. These findings demonstrate a new data-driven approach to analysing age-related changes in the architecture of the BBB.


(Читать комментарии) (Добавить комментарий)