Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет bioRxiv Subject Collection: Neuroscience ([info]syn_bx_neuro)
@ 2025-03-19 06:48:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Optimal Neuromuscular Performance Requires Motor Neuron Phosphagen Kinases
Phosphagen systems are crucial for muscle bioenergetics - rapidly regenerating ATP to support the high metabolic demands of intense musculoskeletal activity. However, their roles in motor neurons that drive muscle contraction have received little attention. Here, we knocked down expression of the primary phosphagen kinase [Arginine Kinase 1; ArgK1] in Drosophila larval motor neurons and assessed the impact on presynaptic energy metabolism and neurotransmission in situ. Fluorescent metabolic probes showed a deficit in presynaptic energy metabolism and some glycolytic compensation. Glycolytic compensation was revealed through a faster elevation in lactate at high firing frequencies, and the accumulation of pyruvate subsequent to firing. Our performance assays included two tests of endurance: enforced cycles of presynaptic calcium pumping, and, separately, enforced body-wall contractions for extended periods. Neither test of endurance revealed deficits when ArgK1 was knocked down. The only performance deficits were detected at firing frequencies that approached, or exceeded, twice the firing frequencies recorded during fictive locomotion, where both electrophysiology and SynaptopHluorin imaging showed an inability to sustain neurotransmitter release. Our computational modeling of presynaptic bioenergetics indicates that the phosphagen systems contribution to motor neuron performance is likely through the removal of ADP in microdomains close to sites of ATP hydrolysis, rather than the provision of a deeper reservoir of ATP. Taken together, these data demonstrate that, as in muscle fibers, motor neurons rely on phosphagen systems during activity that imposes intense energetic demands.


(Читать комментарии) (Добавить комментарий)