Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет bioRxiv Subject Collection: Neuroscience ([info]syn_bx_neuro)
@ 2025-06-27 06:19:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Shallow Recurrent Decoders for Neural and Behavioral Dynamics
Machine learning algorithms are affording new opportunities for building bio-inspired and data-driven models characterizing neural activity. Critical to understanding decision making and behavior is quantifying the relationship between the activity of neuronal population codes and individual neurons. We leverage a SHallow REcurrent Decoding (SHRED) architecture for mapping the dynamics of population codes to individual neurons and other proxy measures of neural activity and behavior. SHRED is a robust and flexible sensing strategy which allows for decoding the diversity of neural measurements with only a few sensor measurements. Thus estimates of whole brain activity, behavior and individual neurons can be constructed with only a few neural time-series recordings. This opens up the potential for using non-invasive, or minimally invasive, measurements for estimating difficult to achieve , or invasive, large scale brain and neural recordings. SHRED is constructed from a temporal sequence model, which encodes the temporal dynamics of limited sensor data in multiple scenarios, and a shallow decoder, which reconstructs the corresponding high-dimensional neuronal and/or behavioral states. We demonstrate the capabilities of the method on a number of model organisms including emph{C.~elegans}, mouse, zebrafish, and human biolocomotion.


(Читать комментарии) (Добавить комментарий)