Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет bioRxiv Subject Collection: Neuroscience ([info]syn_bx_neuro)
@ 2025-07-16 18:31:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
KIASORT: Knowledge-Integrated Automated Spike Sorting for Geometry-Free Neuron Tracking
Identifying single units from extracellularly recorded neural signals is critical for understanding brain circuit dynamics. With the advancements of large-scale recordings, efficient and precise automated spike sorting methods have become essential. Existing approaches face challenges with channel quality variability, neuron-specific waveform drifts, and nonlinear changes in spike shapes that depend on neuronal morphology and electrode proximity. We introduce KIASORT (Knowledge-Integrated Automated Spike Sorting), which integrates knowledge from channel-specific classifiers trained on clustered spike waveforms to sort the data. KIASORT evaluates channel quality, automatically excludes noisy recordings, and identifies spike classes using a hybrid dimensionality reduction approach combining linear with nonlinear embeddings. To validate our approach against existing methods, we developed biophysical simulations demonstrating that conventional one-dimensional drift correction methods cannot address heterogeneous neuron-specific drift and nonlinear waveform changes. KIASORT's geometry-free, per-neuron tracking approach overcomes these limitations without assumptions about cluster shape or temporal stability. Specifically, KIASORT identified significantly greater number of high-quality units than Kilosort4 in ground-truth simulations with neuron-specific drift, while maintaining real-time processing capability. Complementing these advances, KIASORT also includes a unified graphical interface for data inspection, sorting, and curation, which is freely available online through link https://github.com/banaiek/KIASORT.


(Читать комментарии) (Добавить комментарий)