Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет bioRxiv Subject Collection: Neuroscience ([info]syn_bx_neuro)
@ 2025-08-07 08:31:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Spatio-temporal dynamics of lateral Na+ diffusion in apical dendrites of mouse CA1 pyramidal neurons
Sodium ions (Na+) are major charge carriers mediating neuronal excitation and play a fundamental role in brain physiology. Glutamatergic synaptic activity is accompanied by large transient Na+ increases, but the spatio-temporal dynamics of Na+ signals and properties of Na+ diffusion within dendrites are largely unknown. To address these questions, we employed multi-photon Na+ imaging combined with whole-cell patch-clamp in dendrites of CA1 pyramidal neurons in tissue slices from mice of both sexes. Fluorescence lifetime microscopy revealed a dendritic baseline Na+ concentration of ~10 mM. Using intensity-based line-scan imaging we found that local, glutamate-evoked Na+ signals spread rapidly within dendrites, with peak amplitudes decreasing and latencies increasing with increasing distance from the site of stimulation. Spread of Na+ along dendrites was independent of dendrite diameter, order or overall spine density in the ranges measured. Our experiments also show that dendritic Na+ readily invades spines and suggest that spine necks may represent a partial diffusion barrier. Experimental data were well reproduced by mathematical simulations assuming normal diffusion with a diffusion coefficient of DNa+= 600 m2/s. Modeling moreover revealed that lateral diffusion is key for the clearance of local Na+ increases at early time points, whereas when diffusional gradients are diminished, Na+/K+-ATPase becomes more relevant. Taken together, our study thus demonstrates that Na+ influx causes rapid lateral diffusion of Na+ within spiny dendrites. This results in an efficient redistribution and fast recovery from local Na+ transients which is mainly governed by concentration differences.


(Читать комментарии) (Добавить комментарий)