Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет bioRxiv Subject Collection: Neuroscience ([info]syn_bx_neuro)
@ 2025-08-24 09:30:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Tension shapes memory: Computational insights into neural plasticity
Mechanical forces have recently emerged as critical modulators of neural communication, yet their role in high-level cognitive functions remains poorly understood. Here, we present a biologically inspired spiking neural network model that integrates mechanical tension, vesicle dynamics, and spike-timing-dependent plasticity to examine how tension influences learning, memory, and cognitive operations such as pattern completion, projection, and association. We find that increased tension enhances synaptic efficiency by accelerating vesicle clustering and recovery, resulting in a 67% improvement in memory recall speed and a 17% increase in inter-regional synchrony during projection relative to relaxed states. Conversely, a 20% reduction in tension leads to a 31% decline in memory association performance, highlighting the tension-sensitive accessibility of stored information. The model further reveals that networks with 20% inhibitory neurons achieve optimal spatial precision in memory encoding and recall. Together, these in silico findings position mechanical tension as a functional neuromodulator and suggest new directions for neuromorphic design and energy-efficient, living computing platforms.


(Читать комментарии) (Добавить комментарий)