|

|

Emergence of Functional Heart-Brain Circuits in a Vertebrate
The early formation of sensorimotor circuits is essential for survival. While the development and function of exteroceptive circuits and their associated motor pathways are well characterized, far less is known about the circuits that convey viscerosensory inputs to the brain and transmit visceromotor commands from the central nervous system to internal organs. Technical limitations, such as the in utero development of viscerosensory and visceromotor circuits and the invasiveness of procedures required to access them, have hindered studies of their functional development in mammals. Using larval zebrafish, which are genetically accessible and optically transparent, we tracked, in vivo, how cardiosensory and cardiomotor neural circuits assemble and begin to function. We uncovered a staged program. First, a minimal efferent circuit suffices for heart-rate control: direct brain-to-heart vagal motor innervation is required, intracardiac neurons are not, and heart rate is governed exclusively by the motor vagus nerve. Within the hindbrain, we functionally localize a vagal premotor population that drives this early efferent control. Second, sympathetic innervation arrives and enhances the dynamics and amplitude of cardiac responses, as neurons in the most anterior sympathetic ganglia acquire the ability to drive cardiac acceleration. These neurons exhibit proportional, integral, and derivative-like relationships to heart rate, consistent with controller motifs that shape gain and dynamics. Third, vagal sensory neurons innervate the heart. Distinct subsets increase activity when heart rate falls or rises, and across spontaneous fluctuations, responses to aversive stimuli, and optogenetically evoked cardiac perturbations, their dynamics are captured by a single canonical temporal kernel with neuron-specific phase offsets, supporting a population code for heart rate. This temporally segregated maturation isolates three experimentally tractable regimes, unidirectional brain-to-heart communication, dual efferent control, and closed-loop control after sensory feedback engages, providing a framework for mechanistic dissection of organism-wide heart-brain circuits.
(Читать комментарии) (Добавить комментарий)
|
|