Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет bioRxiv Subject Collection: Neuroscience ([info]syn_bx_neuro)
@ 2024-02-21 11:46:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
The Topology of Representational Geometry
Representational similarity analysis (RSA) is a powerful tool for abstracting and then comparing neural representations across brains, regions, models and modalities. However, typical RSA analyses compares pairs of representational dissimilarities to judge similarity of two neural systems, and we argue that such methods can not capture the shape of representational spaces. By leveraging tools from computational topology, which can probe the shape of high-dimensional data, we augment RSA to be able to detect more subtle yet real differences and similarities of representational geometries. This new method could be used in conjunction with regular RSA in order to make new inferences about neural function.


(Читать комментарии) (Добавить комментарий)