Все статьи подряд / Математика / Хабр's Journal
[Most Recent Entries]
[Calendar View]
Monday, May 31st, 2021
Time |
Event |
12:00p |
Неполнота науки: как жил и что доказал Курт Гёдель?
«Достижения Курта Гёделя в современной логике уникальны и монументальны. Определенно, это — нечто большее, нежели памятник ученому, это — путеводная звезда, свет которой продолжит распространяться в пространстве и времени вечно».
Джон фон Нейман
Накануне гибели Австро-Венгерская империя подарила человечеству немало великих умов. Такие громкие имена, как Эрвин Шрёдингер, Зигмунд Фрейд и Стефан Цвейг известны, пожалуй, каждому, включая даже тех, кто бесконечно далек от мира физики, психоанализа или классической литературы. С работами же Курта Гёделя знакомы не многие, хотя масштаб его вклада в математическую науку сопоставим с достижениями Эйнштейна в области физики. Ведь если теория относительности и квантовая теория помогли человечеству взглянуть под совершенно иным углом на законы мироздания, то теоремы Гёделя заставили ученых пересмотреть свои представления о научной методологии и принципах работы человеческого разума.
Логика, как образ жизни
Курт Фридрих Гёдель родился 28 апреля 1906 года в австро-венгерском городе Брюнн (ныне — статутный город Чешской Республики Брно), в семье австрийского коммерсанта Рудольфа Августа Гёделя, управляющего крупной текстильной фабрикой. Хотя Курт с детства демонстрировал недюжинные способности к языкам (еще в ранней юности он освоил английский и французский, научившись изъяснятся на них не хуже, чем на родном немецком), однако карьера лингвиста его не прельщала. Окончив в 1923 году школу, молодой человек поступил в Венский университет, первые два курса которого посвятил изучению физики, однако затем переключился на математику, чему во многом способствовало прочтение книги Бертрана Рассела «Введение в философию математики».
Молодой Курт Гёдель, 1925 год Читать дальше → | 12:55p |
[Перевод] Теория игр как механизм для анализа крупномасштабных данных Современные системы искусственного интеллекта подходят к решению таких задач, как распознавание объектов на изображениях и прогнозирование трёхмерной структуры белков, как прилежный студент готовится к экзамену. Тренируясь на многих примерах решения аналогичных задач, они со временем сводят к минимуму собственные ошибки и в конце концов добиваются успеха. Но приведённый пример — лишь частный случай и лишь одна из известных форм обучения. К старту курса "Machine Learning и Deep Learning" делимся переводом статьи о том, как в DeepMind создали многоагентную систему при помощи нового подхода EigenGame, то есть компромисса между чистой оптимизацией и динамической системой. Читать далее | 2:29p |
Альтернативный способ заполнения «спиральной матрицы» В процессе изучения основ алгоритмизации и программирования в качестве студента еще в середине 2000х мне попалась довольно известная всем задача по заполнению «спиральной» матрицы. Суть состоит в том, начиная с позиции [1, 1], продвигаясь по часовой стрелке, заполнить квадратную матрицу заданной величины числами в возрастающем порядке. На ее решение было потрачено около двух часов. Читать далее | 9:30p |
|
|