Игра в собственные Имеем набор данных в виде совокупности квадратных матриц, которые используются - вместе с известным выходом - в качестве тренировочного набора для нейронной сети. Можно ли обучить нейронную сеть, используя только собственные значения матриц? Во избежание проблем с комплексными значениями, упор делаем на симметричные матрицы. Для иллюстрации используем набор данных MNIST. Понятно, что невозможно восстановить матрицу по ее собственными значениям - для этого понадобится еще кое-что, о чем мы поговорим далее. Поэтому трудно ожидать некоего прорыва на данном пути, хотя известно, что можно говорить о чем угодно, строить грандиозные планы, пока не пришло время платить. О деньгах мы здесь не говорим, просто задаем глупый вопрос, на который постараемся получить осмысленный ответ, тем более что в процессе познания расширим свои научные горизонты. Например, сначала мы познакомимся с тем, как находить собственные векторы и собственные значения (eigenvalues and eigenvectors) для заданной квадратной матрицы, затем плавно выкатим на эрмитовы и унитарные матрицы. Все иллюстративные примеры сопровождаются простыми кодами. Далее возьмем MNIST , преобразуем в набор собственных значений симметричных матриц и используем молоток от Keras. Как говорят в Японии: “Торчащий гвоздь забивают”. Закроем глаза и начнем бить, а на результат можно и не смотреть: получится как всегда. Сразу скажу, что изложение будет проведено как можно ближе к тому, как я это дело понимаю для себя, не обращаясь к строгому обоснованию, которое обычно не используется в повседневной жизни. Иными словами, что понятно одному глупцу, понятно и другому. Все мы невежественны, но, к счастью, не в одинаковой степени. С другой стороны, предполагаю, что многие, хоть и в гимназиях не обучались, но имеют представление - по своему опыту обучения, - что значит впихнуть невпихуемое.
Читать далее