Настроение: | weird |
Музыка: | Anarchist |
психопатоматематика
Сегодняшняя рассылка главного научного и
сугубо модерируемого препринт-сервера
http://arXiv.org/ принесла статью под чудесным названием
"Коники, (q+1)-арки, пучковое понятие
времени и психопатология".
Раздел: алгебраическая геометрия.
Междисциплинарные исследования! Ебаный врот.
Я всегда говорил, что к математике ближайшая
из естественных наук - психиатрия.
Но мне никто не верил.
Козлы, бля
Вот она, прекрасность жизни:
Paper: math.AG/0301009
From: Metod Saniga <msaniga@auriga.ta3.sk>
Date: Thu, 2 Jan 2003 13:42:26 GMT (6kb)
Title: Conics, (q+1)-Arcs, Pencil Concept of Time and Psychopathology
Authors: Metod Saniga
Comments: 4 pages, no figures, LaTeX, to appear in Frontier Perspectives
Subj-class: Algebraic Geometry
\\
It is demonstrated that in the (projective plane over) Galois fields GF(q)
with q=2^n and n>2 (n being a positive integer) we can define, in addition to
the temporal dimensions generated by pencils of conics, also time coordinates
represented by aggregates of (q+1)-arcs that are not conics. The case is
illustrated by a (self-dual) pencil of conics endowed with two singular conics
of which one represents a double real line and the other is a real line pair.
Although this pencil does not generate the ordinary (i.e., featuring the past,
present and future) arrow of time over GF(2^n), there does exist a
pencil-related family of (q+1)-arcs, not conics, that closely resembles such an
arrow. Some psycho(patho)logical justifications of this finding are presented,
based on the "peculiar/anomalous" experiences of time by a couple of
schizophrenic patients.
\\ ( http://arXiv.org/abs/math/0301009 , 6kb)