| Comments: |
![[User Picture]](http://lj.rossia.org/userpic/76891/2147484417) | | From: | bbixob@lj |
| Date: | April 12th, 2004 - 10:57 am |
|---|
| | продолжение | (Link) |
|
0.1.1 Algebraically closed fields and Vector Spaces
Steinitz theorem that the isomorphism class of an algebraically closed field is given by its characteristic and its transcendence degree, is thus a very important theorem for us, and---for us---it is the raison d'etre of algebraically closed fields, and it is an explanation of why they occur in mathematics everywhere. (In model theory terms, he theorem actually states the (uncountable) categoricity of the theory of an algebraically closed field of certain characteristic in the language of rings. )
Algebraically closed fields appearing everywhere---from our point of view, an algebraic variety is just the same as a field; indeed, a natural language for an algebraic variety consists of all its subvarieties (and subvarieties of its Cartesian powers). And it is a theorem of Model Theory that, for any algebraic variety, this language is able to define the field, and the operations on it...And such a field, obviously, recovefunctions on the variety, the ring of regular functions, etc....
A vector space is also determined uniquely by its dimension; the proper language for vector spaces is when each linear (or rather, affine) function has its own name; the base field is thus ingrained in the language itself. And indeed, we want to speak about the vector space, not the field!
The Slogan above naturally and naively leads to a conjecture that
any categorical theory is essentially equivalent either to a vector field or an algebraically closed field.
The conjecture was proven false, but it has been recovered in the following way.
0.2 Zariski Geometries
With each variety X, one might associate the geometry of its closed subvarieties. Essentially, it is the Zariski topology on X. One might formulate some properties of the Zariski topology in a formal way, like the following ones:
* it is Notherian,
* the image of projection is constructible
One might also speak of dimension, which satisfies
* formulae for dimension of union
* a formulae connecting the dimension of kernel and the dimension of image i
* semi-continuity of dimensions of fibres
* (if X is smooth) a formula for dimension of intersection
A Zariski geometry is a topology satisfying there abstract properties (except the formula for intersections) of a Zariski topology of a variety. It is called pre-smooth if if it also satisfies the formula for intersections.
In fact, those properties are very strong. In dimension 1 (that is, when the whole set has dimension 1), a Zariski geometry is always "almost" comes from Zariski topology on a curve; "almost" means that it it a finite cover of such. In general, one might reasonably recover a notion of a ring of "regular" (definable) functions associated to such a geometry, multiplicities of intersections, and other.
This fits in the ideology described above; the fact that we can say something useful (speak of dimension) already tell us a lot.
However, as mentioned above, not all examples of Zariski geometries come from Zariski topologies of varieties (over an algebraically closed field.) In fact, we believe that non-trivial examples might be quantum manifolds, supermanifold, i.e. come from non-commutative geometry.
One could hope also for other results of this sort; for example, one might consider a universal cover of a toric variety or an abelian variety, and then consider the associated geometry of analytic sets. This will be a purely algebraic notion which can be axiomatised and studied. For such covers, one may actually prove uniqueness (categoricity) results; in a way, such results show what is the relation between complex topology and the abstract, discrete automorphism group of the universal cover (that is closely related to Galois group.) That is what I try to do.
Извините, что никак не мог собраться написать, тем более что я просил что-нибудь написать про теорию моделей.
Правда, никакого содержательного комментария я пока написать не могу. Для меня ваш переход от свободы воли к геометриям Зарисского оказался слишком быстрым; пожалуй, я не уследил за вашим ходом мысли - и наконец в этом признаюсь. С другой стороны, это напомнило мне школьный кружок по математической логике и философии математики. Это был замечательный кружок; потом у меня не было возможности серьезно обсуждать такие вопросы.
Ближайшие пара недель у меня будут совсем неподходяшими для серьезных размышлений, но потом я надеюсь вернуться к вашим постам.
Спасибо за ответ! Буду очень рад дискуссии с Вами, когда Вам будет удобно. А пока я постараюсь за эти две недели написать что-нибудь про переход к геометриям Зарисского. (и сказать что-либо осмысленное о там, каких приложения мы ожидаем..)
С другой стороны, это напомнило мне школьный кружок по математической логике и философии математики.
у каждой области математики своя философия, свое видение мамематики; и так получаестся, что Философию логики удобно начинать обснять в филосовских терминах (на которых, естественно, далеко не уедешь, но начинать удобно именно с них.) Так что философия здесь постольку поскольку....
Вот, написал пост про структуры Зарисского, где обьяснил их определение и, немножко, почему они естественны/интересны/что значат с точки зрения т. моделей...Посмотрите пожалуйства, когда будет время....извините за задержку. http://www.livejournal.com/users/bbixob/10307.html | |