Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет posic ([info]posic)
@ 2010-04-07 21:10:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Entry tags:math2

CDG-бимодули как тензорные произведения CDG-модулей
Пусть A и B -- CDG-алгебры над полем k. Всякому левому CDG-модулю M над A и правому CDG-модулю N над B сопоставим CDG-бимодуль M⊗kN над A и B. Эта операция тензорного произведения индуцирует функтор между копроизводными категориями

Dco(A-mod) x Dco(mod-B) → Dco(A-mod-B).

При каких условиях образ этого функтора порождает копроизводную категорию CDG-бимодулей, хотя бы в слабом смысле зануления ортогонала к образу? Заметим, что такое утверждение верно для 1. производных категорий DG-модулей над DG-алгебрами и 2. копроизводных категорий CDG-комодулей над конильпотентными CDG-коалгебрами (где подразумевается порождение с помощью сдвигов-конусов и бесконечных прямых сумм).