Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет clement ([info]clement)
@ 2003-04-12 16:07:00

Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Проблема остановки и Стефен Вольфрам
http://mathworld.wolfram.com/HaltingProblem.html

Halting Problem

The determination of whether a Turing machine will come to a halt given a particular input program. The halting problem is solvable for machines with less than four states. However, the four-state case is open, and the five-state case is almost certainly unsolvable due to the fact that it includes machines iterating Collatz-like congruential functions, and such specific problems are currently open. The problem of whether a general Turing machine halts is undecidable, as first proved by Turing (Wolfram 2002, pp. 1137-1138).

Wolfram 2002 = Stephen Wolfram, A New Kind of Science.




A 2-state 5-color universal Turing machine, illustrated above, was discovered by Wolfram (2002, p. 707).

http://mathworld.wolfram.com/UniversalTuringMachine.html

BUT, the halting problem for universal Turing machines is known to be undecidable! So, how can a 2-state machine be universal?!


(Читать комментарии)

Добавить комментарий:

Как:
(комментарий будет скрыт)
Identity URL: 
имя пользователя:    
Вы должны предварительно войти в LiveJournal.com
 
E-mail для ответов: 
Вы сможете оставлять комментарии, даже если не введете e-mail.
Но вы не сможете получать уведомления об ответах на ваши комментарии!
Внимание: на указанный адрес будет выслано подтверждение.
Имя пользователя:
Пароль:
Тема:
HTML нельзя использовать в теме сообщения
Сообщение: