Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет Rodion Déev ([info]deevrod)
@ 2019-06-19 14:49:00

Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Музыка:Соломенные Еноты -- Блюз простого человека

Однородные пространства и орисферическая деформация
Пусть \g -- полупростая алгебра Ли. Подалгебра \p \subset \g называется параболической, если она коизотропна относительно формы Картана-Киллинга. Например, в алгебрах so(n,1) и su(n,1) параболическими являются подалгебры, стабилизирующие фиксированную изотропную прямую в пространстве, на котором они действуют векторными полями. По определению, естественное отображение из нильрадикала \p_+ \to (g/p)^* исчерпывает это пространство, тем самым кокасательное расслоение однородного пространства G/P изоморфно расслоению нильрадикалов.

Теорема (Лобачевский). Нильрадикал параболической подалгебры в so(n,1) есть абелева алгебра.

Соответствующая подгруппа P, конечно, действует на пространстве G/K, где G = SO(n,1), а K -- максимальная компактная подгруппа. Орбита этого действия называется орисферой. Несложно видеть, что элементы нильрадикала определяют полные киллинговы векторные поля на этой орбите. Поскольку они коммутируют, а число их таково же, какова размерность орбиты, из теоремы Лобачевского следует, что орисфера в (вещественном) пространстве Лобачевского имеет евклидову геометрию -- в каковом открытии одна из главных заслуг Лобачевского и состоит.

Что до G = SU(n,1), то безымянный комплексный аналог теоремы Лобачевского гласит, что нильрадикал этой параболической подалгебры изоморфен алгебре Гейзенберга. Соответственно, орисфера в комплексном пространстве Лобачевского имеет гейзенбергову геометрию. Контактное распределение на ней -- это, разумеется, КР-распределение на орисфере как на вещественном подмногообразии в комплексной области коразмерности один.

В случае пространства периодов SO(3,n)/SO(2) x SO(1,n) или верхнего полупространства Зигеля SO(2,g)/SO(2) x SO(g) всё уже не так просто. Стабилизатор предельного положения положительной плоскости -- то есть плоскости с неотрицательно полуопределённой метрикой -- довольно понятная группа, но фактор по ней не является компактным многообразием. Оно и понятно: такие плоскости имеют также предельные положения, соответствующие плоскостям, на которые метрика ограничивается тождественным нулём. Тем не менее, в маломерном случае SO(3,1)/SO(2) x SO(1,1) такой проблемы не возникает, а сама она допускает красивое геометрическое описание.

Именно, в проективизации нули квадратичной формы сигнатуры (3,1) образуют двумерную сферу. Точки пространства периодов, то есть положительно определённые плоскости, соответствуют ориентированным прямым, которые не пересекают этой сферы, а предельные положения, то есть полуопределённые плоскости -- касательные к сфере. Соответственно, подгруппа, сохраняющая одну точку на таком 'абсолюте' (скажем, прямую l, касающуюся сферы в точке s) -- это группа матриц, верхне-треугольных в понятно каком базисе. Геометрически это группа проективных преобразований, сохраняющих флаг s \subset l \subset T_s{S}, где S -- сфера изотропных направлений. Поскольку параболической она не является, назовём её орисферической. Положительно определённые прямые (не пересекающие сферы) распадаются под действием орисферической подгруппы на четыре типа.

Первый составляют прямые, не пересекающие ни l, ни перпендикулярной прямой l^\perp (единственных двух прямых, сохраняемых действием орисферической подгруппы). На них группа действует, кажется, свободно. Второй А (соответственно, второй Б) классы составляют прямые, пересекающие l, но не l^\perp (соответственно, наоборот). Их орбиты неизбежно состоят из прямых, пересекающих эти прямые, тем не менее, действие орисферической подгруппы на них всё же свободно. Последний класс составляют прямые, пересекающие и l, и l^\perp, то есть попросту лежащие в T_s{S}. Трёхмерное подпространство, проективизацией которого является T_s{S}, это пространство с двумя плюсами и одним изотропным направлением. Грассманиан положительных плоскостей в нём -- это вырожденная твисторная кривая. Твисторным кривым соответствуют в такой картинке множества прямых, содержащихся в фиксированной плоскости, не пересекающей сферы S.

Таким образом, вырожденная твисторная кривая в такой ситуации является предельным положением орисфер первых двух типов, и наиболее маломерной орбитой орисферической группы. В большей размерности квадрика изотропных направлений устроена гораздо сложнее, чем сфера; вместе с тем линейная оболочка положительно определённой плоскости и полуопределённой плоскости не может иметь размерность больше четырёх, так что описанная ситуация возникает как сечение в любой размерности. Соответственно, имеет смысл говорить об орисферических деформациях гиперкэлеровых многообразий над некой трёхмерной базой. Интересно, какой? группой Гейзенберга?



(Читать комментарии)

Добавить комментарий:

Как:
Identity URL: 
имя пользователя:    
Вы должны предварительно войти в LiveJournal.com
 
E-mail для ответов: 
Вы сможете оставлять комментарии, даже если не введете e-mail.
Но вы не сможете получать уведомления об ответах на ваши комментарии!
Внимание: на указанный адрес будет выслано подтверждение.
Имя пользователя:
Пароль:
Тема:
HTML нельзя использовать в теме сообщения
Сообщение:



Обратите внимание! Этот пользователь включил опцию сохранения IP-адресов пишущих комментарии к его дневнику.