крест и радуга [entries|friends|calendar]
Rodion Déev

[ userinfo | livejournal userinfo ]
[ calendar | livejournal calendar ]

[12 May 2022|05:18pm]
[ mood | sick ]

Маркман получает свою К3 такой-то матерью: берет то, что мы называли 'существенной структурой Ходжа' (фактор ортогонала к пулбэку O(1) с базы по самому пулбэку O(1)), замечает что оно из теоретико-решетчатых соображений изоморфно примитивным когомологиям какой-то К3, а потом при помощи напильника получает саму К3 (а не только ее класс партнерства Фурье-Мукаи -- хотя казалось бы из примитивных когомологий ничего более тонкого не вытащишь). Но наверное можно было бы пытаться делать это более геометрично.

Давайте отвлечемся и опровергнем одну гипотезу Богомолова. Пусть есть лагранжево расслоение над P^n, и возьмем прямую P^1 \subset P^n. Допустим, что над нею есть сечение. Богомолов предположил, что тогда есть рациональное сечение надо всем P^n: надо-де просто поелозить этим P^1-ом, который есть сечение, во всех направлениях, таким образом получится сечение над любой прямой в P^n, а стало быть и рациональное сечение.

Пример будет такой: возьмем К3-поверхность S с линейной системой |C| \subset S кривых рода два. Как известно, всякая такая K3 допускает инволюцию с фактором P^2, после которой линейная система |C| превращается в линейную систему прямых. Рассмотрим компактифицированное многообразие Пикара Pic^1(|C| \subset S), члены которого суть пучки с носителями на кривых из |C|, в ограничении на свой носитель устроенные как линейное расслоение степени 1. Выберем точку x \in S, и рассмотрим всевозможные кривые из C_t \in |C|, проходящие через x, и на них пучок O_{C_t}(x). Это задаст рациональную кривую в многообразии Pic^1(|C|), которая проецируется в прямую, двойственную к x (базой лагранжева расслоения является P^2, двойственная к той, что накрывается поверхностью S). Гипотеза Богомолова утверждала бы, что это сечение разносится до рационального. Однако это неверно: в противном случае имелся бы бирациональный изоморфизм Pic^1(|C|) \to \Pic^0(|C|) с многообразием Маркушевича, в то время как известно, что они связаны только вырожденною твисторной деформацией. Напротив, легко видеть, что всячески двигая базу этого сечения (то есть точку x \in S), мы получаем рациональные кривые, заметающие следующее многообразие: среди всего многообразия модулей пучков, сосредоточенных на кривых из |C| и имеющих в ограничении на них степень 1, мы берем те, что получаются как O_C(x) для какой-то точки x \in C. С каждым слоем такой локус пересекается по кривой (образу вложения C \to Pic^1(C)), то есть суммарно это такой относительный тэта-дивизор. Фактор по его характеристическому слоению есть исходная K3-поверхность S.

Выбор рода два особенно нагляден, но можно повторить все то же самое для любой поляризованной К3. А именно, в компактифицированном многообразиии Пикара Pic^k(|C| \subset S) будет сидеть локус \Theta(S, |C|, k) размерности g+k, состоящий из пучков, выглядящих в ограничении на свой носитель C как O_C(x_1 + x_2 + ... + x_k) для каких-то точек x_1, x_2, ... x_k \in C. Он будет допускать бирациональное стягивание на Hilb^k(S) с общим слоем P^{g-k}, причем, рассматриваемые как подмногообразия в Pic^k, слои эти проецируются на базу как линейные подпространства Pic^{g-k} \subset P^g.

Так что возможно в маркмановской задаче имеет смысл делать вырожденную твисторную деформацию такую, в которой возникал бы относительный тэта-локус \Theta(1) размерности g+1, а его фактор по характеристическому слоению был бы исходной K3. Однако мы не можем контролировать ходжевость соответствующего класса в H^{2g-2} гомологически. Вместо этого можно добиться ходжевости тэта-дивизора в H^2 для k = g-1. Однако пока я это писал, мне опять стало тошно про это думать. Наверное, все это уже было у Савона.

1 comment|post comment

Союзное расслоение на многообразии Бовиля-Мукаи? [28 Nov 2021|11:06am]
Формула на mathoverflow была естественно неправильная; а правильная такая:

H^2(K3^{[n]}, Z) = H^2(K3, Z) + Z[E]; q([E]) = 2-2n

Вот её Маркушевич пишет.

Стало быть, в инвариантной плоскости, порождённой [C] и [E] в когомологиях многообразия Бовиля-Мукаи линейной системы |C|, имеются два изотропных вектора: [C] + [E] и [C] - [E]. Один из них, несомненно, есть параболический вектор расслоения Бовиля-Мукаи, другой -- непонятно. Если он nef (а чего бы ему не быть?), он должен задавать некое союзное расслоение, слой которого пересекается со слоем Бовиля-Мукаи по 4g-4. Например для расслоения Маркушевича это 4, что хорошо согласуется со знанием о том, что общая абелева поверхность отображается на P^2 со степенью четыре.

Вообще интересно посмотреть на возможные изотропные векторы. Действительно, если C \subset S кривая рода g, то вектор a[C] + b[E] \in H^2(S^{[n]}, Z) имеет квадрат a^2(2g-2) + b^2(2-2n). Если g = n, этот вектор может быть изотропен только если он параболический вектор для Бовиля-Мукаи или этого гипотетического союзного с ним расслоения. Вообще же говоря, у нас просто получается что (g-1)/(n-1) = (a/b)^2, не более того. Например в случае двухточечной схемы Гильберта любая кривая рода m^2 + 1 определяет изотропный вектор. Является ли он параболическим для какого-нибудь лагранжева расслоения? Подозреваю, ортогональная группа решётки может переводить одни такие вектора в другие (не сохраняя при этом исключительный дивизор, разумеется). То есть скажем из кривой рода два на К3 можно получить кривую рода пять на какой-то другой К3, применяя какое-то скручивание Дена к её двухточечной схеме Гильберта и толкая вперёд лагранжево расслоение.
1 comment|post comment

Расслоения Бовиля-Мукаи и противоречие в математике [17 Nov 2021|12:32pm]
[ mood | sick ]

Вот есть у нас многообразие Бовиля-Мукаи BM_d(S, |C|). Оно параметризует пучки на К3-поверхности S с вектором Мукаи таким что, тыры-пыры, короче которые выглядят как линейные расслоения степени d над своим носителем, который приходится кривой из линейной системы |C|. Например, если d = g есть род этой кривой, то оно бирационально изоморфно g-точечной схеме Гильберта Hilb^g(S).

А именно, рассмотрим многообразие F, параметризующее флаги (S, C, D), где C \subset S кривая рода g, и D \subset C эффективный дивизор степени g. Мы можем рассмотреть отображение F \to Hilb^g(S), забывающее про кривую, а можем отображение F \to BM_g(S, |C|), забывающее про дивизор и сопоставляющее ему пучок i_*O_C(D), где i : C \to D тавтологическое вложение. Давайте рассмотрим S вложенной в P^g линейной системой |C|. Тогда проекция F \to Hilb^g(S) неоднозначна в точности в подсхемах, которые содержатся в проективном подпространстве коразмерности хотя бы два (в противном случае через них проходит ровно одна гиперплоскость, высекающая единственную возможную кривую из |C|, на которой эта подсхема лежит). Проекция F \to BM_g(S, |C|) неоднозначна в точности в пучках с h^0 > 1, а по теореме Римана-Роха это в ту же цену, что h^1 > 0.

Наверху это один и тот же локус! Это следует из следующей леммы: кривая из линейной системы |C| на К3-поверхности S сидит на гиперплоскости, которой она высекается вложением S \to P^g при помощи |C|, своим каноническим вложением C \to P^{g-1}. Стало быть, если какая-то подсхема в S лежит более чем на двух гиперплоскостях, это значит что для каждой из кривых, на которых она лежит, она попадает в некоторую гиперплоскость при каноническом вложении. Иначе говоря, существует 1-форма с нулями в этой подсхеме; а пространство таких 1-форм это в точности H^0(K \o O(-D)) = H^1(O(D)).

Всё вышеизложенное верно; где-то же после этого места имеется ошибка.

Про бирациоальную изоморфность многообразий Бовиля-Мукаи другой степени мы, конечно, ничего сказать не можем (за вычетом того что они изоморфны друг другу через 2g-2). Однако они все диффеоморфны схеме Гильберта. Вторые рациональные когомологии схем Гильберта изоморфны, как векторное пространство, H^2(S, \Q) \oplus [E], где [E] класс вдутого дивизора. Группа классов отображений К3-поверхности действует как ортогональная группа формы пересечения, в частности без неподвижных векторов; оно индуцирует на схеме Гильберта такое же действие, у которого инвариантом будет [E].

Теперь рассмотрим группу классов отображений, сохраняющих поляризацию [C]. Она, вроде как, действует ортогональной группой перпендикулярной к нему подрешётки, и на схеме Гильберта стало быть действует всего с двумя инвариантами, [C] и [E]. В постинге на mathoverflow утверждают, что квадрат Бовиля-Богомолова для линейной комбинации a[C] + b[E] равняется a^2[C].[C] - 2b^2, а поскольку [C].[C] = 2g-2, имеем квадрат (2g-2)a^2 - 2b^2. Он не может равняться нулю, если g-1 не есть полный квадрат.

Однако он должен! Группа классов отображений, сохраняющих поляризацию [C], действует эквивариантно и на многообразии Бовиля-Мукаи, сохраняя лагранжево расслоение. Параболический вектор этого расслоения целочислен, инвариантен, и имеет нулевой квадрат Бовиля-Богомолова. Где ошибка?

10 comments|post comment

Противоречие в математике [15 Oct 2021|02:05pm]
[ mood | bored ]

Объясню для приличия чуть более подробно предыдущий пост. Возьмём кривую C рода g, и отметим на ней 2N точек, а потом возьмём и двулистно накроем с ветвлением в этих точках. Получится кривая S рода g', давайте вычислим его по формуле Римана-Гурвица: 2-2g' = 2(2-2g-2N) + 2N, то есть 1-g' = 2-2g-N, то есть g' = 2g+N-1. Инволюция, возникающая на кривой S, действует на голоморфных 1-формах, причём собственное подпространство, на котором она действует с плюсом, это в точности формы, поднятые с C. Их пространство g-мерно, а стало быть размерность собственного подпространства с минусом равняется g'-g = g+N-1. Заметим, что инволюция сохраняет целочисленную структуру Ходжа, а следовательно и её собственные пространства приходят из целочисленных подструктур Ходжа. Целочисленная подструктура Ходжа в первых когомологиях это то же самое что фактор якобиана; то есть кривая S отображается в некое абелево многообразие A размерности g+N-1, причём формы, ограничивающиеся с него, суть собственные формы для инволюции с собственным числом -1, и можно выбрать вложение так, чтобы отображение x \mapsto -x на A сохраняло образ кривой и индуцировало на ней ту же самую инволюцию. Тем самым, фактор S по инволюции -- то есть исходная кривая C -- отображается в фактор A/\pm 1, и значит поднимается в его десингуляризацию, многообразие Куммера. Итого: всякая кривая рода g может быть вложена в куммерово многообразие размерности g-1 или выше.

Остановимся на случае куммеровой поверхности. У нас есть следующее данное: тор A, кривая рода g < 6 на нём, сохраняемая инволюцией x \mapsto -x, на которой она индуцирует инволюцию с 10-2g неподвижными точками. Малая деформация кривой, после подходящего сдвига, сохраняет это условие, ибо оно топологическое; стало быть, возникает семейство кривых -- и после факторизации они определяют (g-2)-параметрическое семейство кривых рода g-2 на поверхности Куммера. Для g = 2 это почти тавтология, для g = 3 это любопытное наблюдение, производящее неизотривиальные эллиптические расслоения на куммеровых К3 (оно присутствует ещё у Барта, но теряется в грудах формул). Остановимся на нём чуть подробнее.

10-2*3 = 4, так что у нашей инволюции на кривой 4 неподвижных точки. Неподвижные точки инволюции это точки 2-кручения поверхности, причём других точек пересечения у них нет. Так что когда мы их раздуваем соответствующие нодальные особенности фактора, получаются 4 рациональные кривые, пересекающиеся с каждой гладкой эллиптической кривой нашего пучка. Это его 4 рациональных сечения. Другие 12 точек 2-кручения на гладких представительницах пучка не лежат, но через них проходят нодальные вырождения, которые после раздутия превращаются в особые слои, устроенные как две рациональные кривые, пересекающиеся в двух точках. Сдвиги на элементы 2-кручения либо сохраняют расслоение (и переставляют его 4 рациональных сечения), либо переводят в одно из трёх других эллиптических расслоений -- у которых также будут 4 сечения, бывшие в других расслоениях компонентами исключительных слоёв. Ничего не предвещает беды.

Давайте теперь g = 4. Тогда 10-2g=2, то есть имеется двухпараметрическое семейство гладких кривых рода четыре, проходящих через две точки 2-кручения, и сохраняемых умножением на -1. При факторизации они превращаются в двухпараметрическое семейство кривых рода два, проходящих через две нодальные особенности. Заметим, что у кривой рода четыре на абелевой поверхности самопересечение 6, так что пересечение двух наших кривых S и S' состоит из шести точек, из которых две точки 2-кручения, а остальные четыре симметричны под действием умножения на -1. Значит у факторов C = S/\pm 1 и C' = S'/\pm 1 получается 2 + (6-2)/2 = 4 точки персечения, из которых первые две это особенности, и после их раздутия остаётся ровно две точки пересечения. Хочется сказать, что тем самым точки нашей поверхности разбиваются на пары, то есть на поверхности возникает инволюция, фактор по которой есть двойное накрытие P^2, на котором наше двухпараметрическое семейство кривых рода два это линейная система поднятия O(1).

Но всё это чрезвычайно подозрительно. Например, куда деваются две исключительные кривые, которые по одному разу пересекают каждую гладкую кривую нашего семейства? Из тех соображений, что две точки 2-кручения, попадающие на наши кривые рода четыре, суть нули дифференциалов, задающих деформации -- а следовательно нули дифференциалов, сохраняемых инволюцей -- а следовательно нули дифференциалов, приходящих с кривой рода два -- а следовательно прообразы точек, переходящих друг в друга при её родной гиперэллиптической инволюции -- кажется, что эти исключительные кривые должны переставляться инволюцией на куммеровой поверхности, и тем самым давать рациональную кривую на P^2. Поскольку всякая кривая рода два из линейной системы пересекала обе исключительные кривые по одной точке, значит и всякая прямая на P^2 будет пересекать эту рациональную кривую по одной точке, то есть сама будет являться прямой. Но тогда она не может лежать в общем положении: её прообраз будет иметь род два!! значит, это что-то вроде би- или даже трикасательной (у нас очень необщая поверхность, так что никто не может заболтать возможность наличия трикасательных мнимыми разглагольствованиями об общем положении).

Но есть тут и более глубокая трудность. А именно, с линейной системой кривых рода g на абелевой поверхности A можно связать голоморфно симплектическое многообразие размерности 2g-4, повесив над каждой точкой, соответствующей гладкой кривой с точностью до сдвига, ядро отображения её якобиана в A, а потом правильным образом замкнув. Это называется расслоением Дебарра, его тотальное пространство бирационально 2g-4-мерному обобщённому многообразию Куммера от A. Мы видели это явно для g=3. Но в случае рода g = 4 ядра такого отображения -- это якобианы соответствующих факторов по инволюции! То есть, если мы действительно можем так получить линейную систему рода два на куммеровой К3, то вне особого локуса многообразие Дебарра будет расслоением на такие же абелевы поверхности, что и расслоение Маркушевича (в большой науке принято говорить 'Бовиля-Мукаи', но в этом блоге устоялась альтернативная терминология) той линейной системы на куммеровой К3, а многообразие Маркушевича бирационально изоморфно двухточечной схемы Гильберта. Если бы эти два лагранжевых расслоения имели голоморно симплектоморфные тотальные пространства, то схема Гильберта была бы деформационно эквивалентна обобщённому многообразию Куммера, что невозможно из-за разных чисел Бетти. Не могут они быть связаны даже вырожденной твисторной деформацией: над аффинной базой это влечёт биголоморфность.

Решений этого противоречия два: либо действительно множеством гладких слоёв (как локусом в пространстве модулей абелевых многообразий) невозможно уловить даже число Бетти тотального пространства, либо конструкция, производящая из поляризации рода четыре на абелевой поверхности куммерову поверхность, реализующуюся как двойное накрытие плоскости, была порочна изначально. Впрочем это тоже было бы интересно понять.

6 comments|post comment

Геометрические структуры на куммеровых поверхностях [14 Oct 2021|06:26am]
[ mood | awake ]
[ music | Jarosław Ławnicki – Affine varieties with simple topology ]

Хорошо известен пример эллиптической К3, для которого можно всякие вещи легко посчитать: это кумметова поверхность произведения двух эллиптических кривых. Сами эти кривые отображаются в две рациональные кривые на куммере, но их сдвиги отображаются в честные эллиптические кривые, и отображения проекции задают два взаимно трансверсальных эллиптических пучка. К сожалению, эти пучки изотривиальны.

Но на куммеровой поверхности можно сделать и неизотривиальный эллиптический пучок! Для этого надо взять абелеву поверхность с гладкой кривой рода три. Барт заметил, что такая кривая есть всегда двулистное накрытие эллиптической кривой, и обратно. В частности, умножение на -1 на абелевой поверхности индуцирует на кривой рода три инволюцию, переставляющую листы этого накрытия, и в куммерову поверхность кривая рода три после подходящего сдвига отображается эллиптической кривой. Начиная деформировать кривую по поверхности так, чтобы она продолжала сохраняться инволюцией, мы получим семейство эллиптических кривых, пересекающихся в четырёх точках кручения, которые после раздутия становятся нетривиальным эллиптическим пучком (с двенадцатью особыми слоями типа I_2).

Аналогично, исчислением размерностей доказывается, что общая кривая рода четыре на абелевой поверхности есть двулистное накрытие кривой рода два, ветящееся в двух точках, а рода пять -- неразветвлённое накрытие кривой рода три. Соответственно, при подходящем сдвиге кривая рода четыре отображается в куммера как кривая рода два, деформирующаяся в двумерном семействе, то есть прообраз прямой на плоскости при двойном накрытии, ветвящемся в секстике, а рода пять -- как кривая рода три с трёхмерным семейством деформаций. Заметим, что для рода два также бывает тривиальный пример: это куммер якобиева многообразия кривой рода два, её сдвиги определяют изотривиальное двумерное семейство. Что такое изотривиальное семейство кривых рода три на куммеровой поверхности, я уже не понимаю.

Интересно, можно ли соорудить у этих семейств послойные якобианы. Так можно было бы опровергнуть гипотезу Мацушиты: если взять кривую рода три на абелевой поверхности, её всевозможные деформации, в том числе и сдвиги, спустятся в куммерову К3 как слои эллиптического пучка плюс некоторое семейство кривых рода три, изотривиальное по двум направлениям, но неизотривиальное по третьему, как бы коллинеарному направлению эллиптического пучка. Послойный якобиан был бы шестимерным многообразием с лагранжевым расслоением, изотривиальным всего по двум направлениям, и нетривиальным по третьему.

4 comments|post comment

Миллениалы изобрели преобразование Фурье-Мукаи [04 Oct 2021|04:25pm]
[ mood | tired ]

Пусть есть голоморфно симплектическое многообразие. Его пространство периодов есть открытый кусок квадрики в P(H^2), то есть имеет размерность b_2-2. Локус многообразий, допускающих лагранжевы расслоения, есть счётное объединение дивизоров в нём, то есть размерности b_2-3, и на нём в свою очередь есть слоение вырожденными твисторными кривыми. Пространство листов этого слоения, называемое [info]tiphareth пространством Алексеева, имеет размерность b_2-4.

Например, если многообразие было деформационно эквивалентно схеме Гильберта К3-поверхности, эта размерность равняется 19, a если обобщённому куммерову многообразию -- то 3. Заметим, что это размерности пространств модулей поляризованных К3 и абелевых многообразий соответственно.

Для К3-поверхностей, как уже неоднокрано упоминалось в этом блоге, имеется конструкция Бисваса-Маркмана-Маркушевича, компактифицирующая относительный якобиан кривых рода g на К3-поверхности до голоморфно симплектического многообразия, деформационно эквивалентного g-точечной схеме Гильберта. Это определяет отображение из пространства периодов К3 с поляризацией рода g в пространство лагранжево расслоённых многообразий. С другой стороны, вырожденная твисторная деформация ему трансверсальна, потому что общая кривая на K3-поверхности не имеет тривиальных деформаций, кроме нулевой. Стало быть, мы таким образом получаем всю компоненту, ну или по крайней мере открытый её кусок (и наверное в силу какой-нибудь эргодичности плотный).

С другой стороны, вырожденная твисторная деформация сохраняет слои. Получается следующий результат: общее абелево многообразие, возникающее как слой лагранжева расслоения на гиперкэлеровом многообразии типа K3^{[n]}, есть якобиан кривой, лежащей на К3-поверхности. Звучит чудовищно неправдоподобно, но что поделать.

Можно например посчитать дифференциал отображения Маркмана из пространства периодов поляризованных К3 в пространство Алексеева. А именно, касательное пространство к пространству периодов это H^{1,1}, поляризацию сохраняет ортогонал к ней по форме пересечения. Касательное пространство к пространству Алексеева это фактор h^\perp/h, где h = c_1(\pi^*(O(1))), а ортогонал берётся по форме Бовиля-Богомолова. И форма пересечения, и форма Бовиля-Богомолова индуцируют на своих пространствах отрицательно определённую форму, и мы ищем естественную изометрию (которая бы ещё наверное переводила целочисленные вектора в целочисленные вектора, если таковые найдутся). Целочисленный вектор в ортогонале к поляризации это линейное расслоение, которое ограничивается на каждую кривую линейной системы как топологически тривиальное. Тем самым, оно задаёт сечение относительного Pic^0, и опуская вдоль него пучок Пуанкаре, мы получаем линейное расслоение на тотальном пространстве относительного якобиана. Кроме того, на каждом слое оно тривиализуется, так что лежит в ядре отображения ограничения H^{1,1}(Jac) \to H^{1,1}(A), а это ядро есть ортогонал к полуобильному вектору относительно формы Бовиля-Богомолова.

Чего я не понимаю, так это где и что я пропустил, что у меня сразу получилось линейное расслоение, а не линейное расслоение с точностью до обратного образа чего-то с базы. С другой стороны, это непонимание воодушевляет: если бы не это, это давно бы уже было написано в какой-нибудь базовой книжке про преобразование Фурье-Мукаи.

2 comments|post comment

Конструкция Маркмана и кривые рода три на абелевых поверхностях [04 Oct 2021|01:02pm]
[ mood | hungry ]

Если [info]v_r и [info]noctiluca, наши друзья и друзья равенства, не врут, то что бы мешало бы конструкцию Маркмана применить и к кривым на абелевой поверхности? Если всё правильно переговорить через пучки, возникнет нечто, а по сути следующее: имеется абелева поверхность A, на ней гладкая кривая рода g. Рассмотрим все её гладкие деформации, это g-мерное многообразие, на котором A действует сдвигами, а фактор \CP^{g-2}. Послойный якобиан этого образования допускает голоморфную симплектическую структуру, которая в свою очередь допускает компактификацию, и на всём этом снова действуют сдвиги, и по ним можно произвести симплектическую редукцию. Получается лагранжево расслоение над \CP^{g-2}, слой которого над точкой C \subset A есть ядро отображения Jac(C) \to A. Это многообразие, вероятно, деформационно эквивалентно обобщённому куммерову многообразию (g-1)-точечных подсхем этой поверхности, суммирующихся нулём.

Но это дико уже для g=3! Получается следующее: имеется кривая рода три C на абелевой поверхности A (или, что то же самое, двойное накрытие эллиптической кривой, разветвлённое в четырёх точках). Её деформации с точностью до сдвига параметризуются \CP^1. Если для каждой деформации мы повесим над соответствующей точкой \CP^1 эллиптическую кривую, ядро отображения из якобиана в A -- или ту самую эллиптическую кривую, которую C двулистно накрывает, это одно и то же -- то получится естественным образом эллиптическая K3-поверхность.

Это не то что бы удивительно: чтобы задать 2-форму в размерности два, нужно указать, как умножается одна пара векторов. Ну возьмём вертикальный вектор (то есть класс из H^{0,1}(C), спаривающийся нулём с любой формой, приходящей на C ограничением с A), возьмём любой другой, спроецируем вниз (получив класс из H^{1,0}(C) с точностью до приходящих ограничением с A), да и спарим. Но что это за K3-поверхность, вообще-то совершенно непонятно. Почему у кривой рода три на абелевой поверхности только 24 (или какое-то частное 24) вырождений? Вопросов больше чем ответов.

С модулями дела обстоят так. Биэллиптические кривые рода три имеют четырёхмерные модули (один параметр -- какую эллиптическую кривую мы накрываем, ещё четыре -- выбор критического локуса, и минус один за действие сдвигами). Биэллиптическая кривая даёт не только К3, но и конкретную эллиптическую кривую на ней, то есть поверхностей таким образом мы получаем не более чем трёхмерное семейство. То есть как куммеровых! Но не на любой куммеровой K3 есть эллиптическое расслоение (хотя если их меньше, проблемы не возникает). Непонятно также, что с этим семейством делает вырожденная твисторная деформация. Думаю, она должна идти трансверсально ему -- в противном случае было бы что-то типа семейства абелевых поверхностей, на которых все кривые рода три одни и те же, а условие быть частным абелева многообразия есть условие дискретное. Вопроса с возможным касанием это, впрочем, не закрывает (дискретность ещё не означает неразветвлённости).

3 comments|post comment

navigation
[ viewing | most recent entries ]