| |||
![]()
|
![]() ![]() |
![]()
Еще немного о редукции коэффициентов в мотивах Артина-Тейта Пусть k -- полное нетерово локальное кольцо, G ⊃ H -- проконечная группа с замкнутой нормальной подгруппой, и с: G → k* -- непрерывный (в адической топологии кольца k) мультипликативный характер. Мы продолжаем пользоваться обозначениями Ak+, Ek,0+ и Ek,i+, и Fk+ для точных категорий из предыдущей серии постингов и препринта 1404.5011, связанных с этим набором данных. Пусть s и t ∈ k -- два не делящих ноль, необратимых элемента. Согласно одному из первых результатов постинга http://posic.livejournal.com/1001187.htm Между точными категориями Fk/st+ и Fk/s+ действует точный функтор Fk/st+ → Fk/s+, сопоставляющий фильтрованному инъективному дискретному k/st-модулю N с дискретным действием G инъективный дискретный k/s-модуль sN (элементов в N, аннулируемых s) с индуцированной фильтрацией и индуцированным действием G. Утверждается, что этот функтор переводит объекты полной подкатегории Fk+/st ⊂ Fk/st+ в объекты полной подкатегории Fk+/s ⊂ Fk/s+. В самом деле -- согласно конструкции обратного функтора из доказательства эквивалентности категорий Ak+/s → Ak/s+ в постинге http://posic.livejournal.com/1000410.htm Теперь если имеется вложение (N,F) → (M,F) фильтрованных дискретных k-модулей над G, обладающее перечисленными свойствами, то ими обладает и композиция (sN,F) → (N,F) → (M,F). Утверждение доказано. |
|||||||||||||
![]() |
![]() |