Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет Лёня Посицельский ([info]lj_posic)
@ 2016-03-18 17:15:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Критерий зануления элемента тензорного произведения
Век живи, век учись: оказывается, настоящим суровым алгебраистам известен критерий обращения в ноль элемента тензорного произведения двух модулей над ассоциативным кольцом. Вот он, этот критерий.

Пусть N -- правый R-модуль с образующими (не свободными, просто какими-то образующими элементами) ni, и пусть M -- левый R-модуль с образующими (тоже не свободными, просто какими-то образующими) mj. Пусть t -- элемент группы N ⊗R M, записанный в виде ∑i ni ⊗ vi, где vi -- какие-то элементы модуля M, причем все из них, кроме конечного числа, равны нулю. Тогда t = 0 в N ⊗R M тогда и только тогда, когда существуют элементы аij кольца R, все из которых, кроме конечного числа, равны нулю, такие что vi = ∑j aij mj в M для всех i и ∑j ni aij = 0 в N для всех j.

Доказательство (оно требует немного подумать насчет логики построения подобного аргумента, но в конечном итоге достаточно прямолинейно) предоставляется читателю.


(Читать комментарии) (Добавить комментарий)