|

|

Задумка (по итогам апреля)
Статья под условным названием Strongly flat modules and contramodules for a flat ring epimorphism of countable type.
Abstract: Let R --> U be an associative ring epimorphism such that U is a flat left R-module. Assume that the related Gabriel topology T of right ideals in R has a countable base. Then we show that the left R-module U has projective dimension at most 1. Furthermore, the abelian category of left contramodules over the completion of R at T fully faithfully embeds into the Geigle-Lenzing perpendicular subcategory to U in the category of left R-modules, and every object of the latter abelian category is an extension of two objects of the former one. Finally, the U-strongly flat left R-modules are characterized by the two conditions of left positive-degree Ext-orthogonality to all left U-modules and all T-separated T-complete left R-modules.
(Читать комментарии) (Добавить комментарий)
|
|