Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет Лёня Посицельский ([info]lj_posic)
@ 2018-05-01 22:52:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Определение
Топологическая абелева группа с отделимой линейной топологией называется контраполной, если всякое, индексированное произвольным множеством, сходящееся к нулю семейство элементов этой группы имеет в ней сумму. Т.е., предел конечных частичных сумм существует в такой ситуации.

Подгруппа топологической абелевой группы с отделимой линейной топологией называется в ней контраплотной, если всякий элемент объемлющей группы можно получить как сумму сходящегося к нулю семейства элементов подгруппы.

Контрапополнением топологической абелевой группы с отделимой линейной топологией называется ... подгруппа обычного пополнения (проективного предела дискретных факторов), состоящая из всех сумм сходящихся к нулю последовательностей? ... Группа, элементами которой являются сходящиейся к нулю последовательности с отношением эквивалентности -- сумма дизъюнктного объединения одной последовательности с минус другой равна нулю? ... Это одно и то же?

Вот это, действительно, всем определениям определение!

(В случае счетной базы окрестностей нуля теория совпадает с классической, конечно.)


(Читать комментарии) (Добавить комментарий)