Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет Лёня Посицельский ([info]lj_posic)
@ 2019-03-01 19:29:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Корректуры
(Бывший подзамочный постинг-комментарий к предыдущему, до сих пор подзамочному, постингу, где рассказывается, что мне прислали корректуру книги, выходящей из печати в Memoires de la Societe mathematique de France. Книга -- архивный препринт 2012 года про слабо искривленные алгебры; сложный, местами занудный текст с тяжелыми грамматическими конструкциями, сложной системой обозначений и т.д. Я прочел корректуру и обнаружил, что нужно внести порядка двухсот или трехсот исправлений -- в основном опечаток, плюс нескольких мелких ошибок.)

***

Тут, почему так получается? Я ведь делаю то, чего не делает больше никто. Двадцать лет уже это происходит, практически (с конца марта 1999 года). То есть проверять за мной -- некому. Моя собственная интуиция нарабатывается по ходу дела, изначально-то ей неоткуда было взяться.

И это математика, то есть логические цепочки очень длинные. Каждая новая существенная идея становится технологией, которую я использую везде, где только можно. Так эта деятельность развивалась долгие годы почти в полной изоляции, новые идеи и конструкции надстраивались поверх старых.

Связи на техническом уровне с тем, чем занимаются другие люди, только начинают появляться где-то сейчас, после 2015 года. Сила этих связей до сих пор не такова, чтобы можно было надеяться, что кто-то заметит существенные ошибки в моих построениях, если они там есть или появятся.

Другое дело, что после 2015 года появилась более-менее реалистическая возможность противоречий между моими результатами и результатами других людей. Если (условно говоря) математика в целом противоречива, или (реально говоря) кто-то из нас ошибся -- можно себе представить, что кто-то приведет контрпример к какому-нибудь следствию из моих результатов.

То есть, пусть не локальная (пошаговая), но некоторая глобальная проверка консистентности уже идет. Пока что мои построения ее выдерживают.

***

Определенные качества характера нужны, чтобы заниматься подобной деятельностью. Сочетание смелости с аккуратностью, видимо, готовностью вникать в подробности и перепроверять детали. Иначе ошибки размножатся и вся конструкция грохнется.

***

Вот, и корректуры я стараюсь вычитывать внимательно.

Один раз махнул рукой. Прочел в каких-то правилах, что издание публикует книжные рукописи as is, без исправления ошибок авторского текста на этапе корректуры, -- ну, и не нашел в себе сил вычитывать текст в поисках ошибок наборщика при невозможности исправить мои собственные ошибки.

Получилось довольно ужасно, потому что ошибки наборщика там-таки были. Работа эта стала популярной и широко цитируемой (не знаю уж, как сказываются на ее репутации все эти опечатки и мелкие ошибки, из которых некоторые я потом исправил в архивной версии). Но, в общем, я стараюсь больше так не делать.


(Читать комментарии) (Добавить комментарий)