Войти в систему

    - Создать дневник
    - Написать в дневник
       - Подробный режим

    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника


Настроить S2

    - Забыли пароль?
    - FAQ
    - Тех. поддержка

Пишет Потеющий Татарстан ([info]oort)
@ 2014-09-26 14:36:00

Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Музыка: Бомж - Нина, 1987

Ultrafilters everywhere


Limits of log canonical thresholds
Tommaso de Fernex, Mircea Mustata
(Submitted on 26 Oct 2007 (v1), last revised 2 Feb 2009 (this version, v4))

Let T_n denote the set of log canonical thresholds of pairs (X,Y), with X a nonsingular variety of dimension n, and Y a nonempty closed subscheme of X. Using non-standard methods, we show that every limit of a decreasing sequence in T_n lies in T_{n-1}, proving in this setting a conjecture of Koll\'{a}r. We also show that T_n is a closed subset in the set of real numbers; in particular, every limit of log canonical thresholds on smooth varieties of fixed dimension is a rational number. As a consequence of this property, we see that in order to check Shokurov's ACC Conjecture for all T_n, it is enough to show that 1 is not a point of accumulation from below of any T_n. In a different direction, we interpret the ACC Conjecture as a semi-continuity property for log canonical thresholds of formal power series.