Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет posic ([info]posic)
@ 2003-09-08 17:28:00

Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Контрамодули и l-адические числа (век живи-2)
Оказывается, есть такое понятие: модуль над кольцом целых l-адических чисел с дополнительной структурой -- для каждой бесконечной последовательности элементов модуля xn определена их сумма с коэффициентами ln. Для бесконечных двухиндексных последовательностей xij должно быть выполнено условие согласования (ассоциативности), которое нетрудно сформулировать. Контрамодули образуют абелеву категорию, как я понимаю. Всякая абелева про-l-группа является контрамодулем. Всякий Z/lmZ-модуль является контрамодулем.

Чем интересны контрамодули?

1. Непрерывные когомологии топологической группы с коэффициентами в топологическом контрамодуле -- например, проконечной группы с коэффициентами в конечно-порожденном Zl-модуле -- являются контрамодулями.
2. На контрамодуле есть "адическая" топология, но она может быть неотделимой.
3. Контрамодули могут содержать бесконечно делимые элементы, но не содержат делимых подгрупп.

Все это немного странно, и, наверно, в науке про l-адические пучки хорошо известно. А может, и не очень хорошо.

Update. См. Uwe Jannsen, "Continuous \'Etale Cohomology". Там объясняется, что когомологии l-адических проективных систем принимают значения в некоторой абелевой подкатегории категории абелевых групп. Эта категория "слабо l-полных" абелевых групп выделяется условием Ext^*(Z[1/l],A)=0 (для Ext^0 получается отсутствие l-делимых подгрупп как раз). Все ее объекты имеют естественную структуру модулей над целыми l-адическими числами.

Связь с "контрамодулями" следует теперь продумать. У Янсена такого понятия, кажется, нет.


(Читать комментарии)

Добавить комментарий:

Как:
(комментарий будет скрыт)
(комментарий будет скрыт)
Identity URL: 
(комментарий будет скрыт)
имя пользователя:    
Вы должны предварительно войти в LiveJournal.com
 
E-mail для ответов: 
Вы сможете оставлять комментарии, даже если не введете e-mail.
Но вы не сможете получать уведомления об ответах на ваши комментарии!
Внимание: на указанный адрес будет выслано подтверждение.
(комментарий будет скрыт, если вы не в списке друзей)
Имя пользователя:
Пароль:
Тема:
HTML нельзя использовать в теме сообщения
Сообщение:



Обратите внимание! Этот пользователь включил опцию сохранения IP-адресов пишущих комментарии к его дневнику.