Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет posic ([info]posic)
@ 2011-09-09 22:37:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Entry tags:math5

fp-инъективные модули им. Х.К.
Взято из Example 5.8 к прекрасной статье http://arxiv.org/abs/1005.0209 .

Модуль J над некоммутативным кольцом R называется fp-инъективным, если ExtR1(M,J) = 0 для любого конечно представимого R-модуля M. Класс fp-инъективных модулей замкнут относительно расширений, бесконечных прямых сумм и бесконечных произведений. Ниоткуда не следует, однако, что он должен быть замкнут относительно коядер вложений (хотя для когерентного кольца это, очевидно, выполняется). fp-инъективные модули находятся примерно в таком же отношении к инъективным, как плоские к проективным. Над нетеровым кольцом fp-инъективные модули совпадают с инъективными.

Условие (*) из раздела 3.7 статьи Two kinds of derived categories... (что счетные прямые суммы инъективных модулей имеют конечную инъективную размерность) должно быть удобно проверять, используя эти fp-инъективные модули. Если они имеют конечную инъективную размерность, то условие (*) выполнено.