Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет posic ([info]posic)
@ 2013-03-11 23:46:00

Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Очень плоские контрамодули - 2
Обобщение теории контрагерентных копучков со схем на (скажем, нетеровы) формальные схемы требует, прежде всего, построения подходящих теорий кокручения в абелевой категории контрамодулей над адическим пополнением (нетерова) кольца. О том, что в категории контрамодулей над полным нетеровым кольцом есть полная теория кокручения, состоящая из плоских контрамодулей и контрамодулей кокручения, я знаю с последних дней мая прошлого года. При этом контрамодуль над пополнением нетерова кольца R по идеалу I называется плоским, если он плоский как R-модуль, и контрамодулем кокручения, если он является R-модулем кокручения.

Построение теории очень плоских и контраприспособленных контрамодулей казалось более сложной проблемой, прежде всего потому, что класс очень плоских модулей не обладает (насколько известно) свойствами замкнутости относительно операций, подобных бесконечному произведению или проективному пределу (которые имеют место для плоских модулей над когерентными или нетеровыми кольцами). Кажется, теперь я научился эту задачу решать.

Идея очень простая: в то время, как мы по-прежнему хотим называть контраприспособленными контрамодулями над пополнением R по I такие контрамодули, которые являются контраприспособленными R-модулями, класс очень плоских контрамодулей мы будем описывать по-другому. В самом деле, ниоткуда, насколько я знаю, не следует, что контрамодули, являющиеся очень плоскими модулями, вообще существуют. Вместо этого, мы хотим считать контрамодуль над пополнением очень плоским, если его приведение по модулю In является очень плоским R/In-модулем для всех n. Типичным примером очень плоского контрамодуля у нас будет I-адическое пополнение какого-нибудь очень плоского R-модуля.

Почему это работает, надо разбираться. Мне сейчас кажется, что я умею преодолевать возникающие при этом подходе препятствия, но более-менее уверенно об этом можно будет говорить, когда доказательства будут написаны (чем я сейчас занимаюсь).


(Читать комментарии)

Добавить комментарий:

Как:
(комментарий будет скрыт)
(комментарий будет скрыт)
Identity URL: 
(комментарий будет скрыт)
имя пользователя:    
Вы должны предварительно войти в LiveJournal.com
 
E-mail для ответов: 
Вы сможете оставлять комментарии, даже если не введете e-mail.
Но вы не сможете получать уведомления об ответах на ваши комментарии!
Внимание: на указанный адрес будет выслано подтверждение.
(комментарий будет скрыт, если вы не в списке друзей)
Имя пользователя:
Пароль:
Тема:
HTML нельзя использовать в теме сообщения
Сообщение:



Обратите внимание! Этот пользователь включил опцию сохранения IP-адресов пишущих комментарии к его дневнику.