Внешняя алгебра, которую мы заслужили. Часть 2 — полиформы и графы
В данной работе мы продолжаем обзор свойств внешней алгебры. В первой части мы определили внешнее произведение элементов, ввели понятие симплексов, границ и копространства. Здесь рассмотрим аффинные пространства, в которых определено скалярное произведение между элементами, их называют также евклидовыми.
Обычно в качестве примера евклидового приводят окружающее нас трехмерное пространство. В нем действительно есть скалярное произведение между элементами и векторами. Но все-таки оно является лишь частным случаем общего семейства евклидовых пространств. Более общим примером являются пространства со связями, в простонародье именуемые графами. Поэтому в основном на метрических свойствах графах мы и сосредоточимся, а в конце покажем, как от графов перейти к обычному пространству.
Читать далее