Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет Все статьи подряд / Математика / Хабр ([info]syn_habr_maths)
@ 2025-03-10 07:21:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Как я решал задачу 2025 года. Часть 1

1-го января из сообщества Незадача дня я узнал про интересные равенства относительно числа 2025 и про задачу, которую на их основе можно сформулировать.

Равенства следующие:

Image

Некоторые, возможно, ещё помнят, что в углублённой школьной (или вузовской) программе встречалось равенство Image. Собственно, оно тут и применяется. Кстати, согласно Википедии, это равенство называется тождеством Никомаха, древнегреческого математика (около 60-120 гг. н.э.).

На основе этих равенств можно сформулировать задачу:

Сколько существует способов расположить 1 квадратик со стороной 1, 2 квадратика со стороной 2, 3 квадратика со стороной 3, … , 8 квадратиков со стороной 8, 9 квадратиков со стороной 9 в квадрате со стороной 45, чтобы они не пересекались?

Читать далее


(Читать комментарии) (Добавить комментарий)