Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет Все статьи подряд / Математика / Хабр ([info]syn_habr_maths)
@ 2025-05-02 09:23:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Геометрия ландшафта потерь и «понимание» нейросети

Когда нейросеть обучается, ее функция потерь образует сложный ландшафт в пространстве параметров – с вершинами (области высокой ошибки) и долинами (области низкой ошибки). Свойства этого ландшафта – его кривизна, форма минимальных долин, спектр матрицы Гессе и пр. – могут многое рассказать о том, насколько модель усвоила закономерности данных. Идея состоит в том, что не все минимумы одинаковы: одни могут быть «плоскими» (широкими и неглубокими), другие «острыми» (узкими и крутыми). Считается, что геометрия такого минимума связана с тем, как хорошо модель обобщает знания за пределы обучающих примеров и насколько «осмысленно» (семантически обоснованно) она их усвоила. В данном обзоре мы рассмотрим, как характеристики ландшафта потерь служат индикаторами обобщающей способности, интерпретируемости, адаптивности модели и ее чувствительности к семантике данных, а также какие количественные метрики предложены для измерения этих свойств.

Читать далее


(Читать комментарии) (Добавить комментарий)