Ученые предложили новый метод решения вариационных неравенств в условиях, когда производные нельзя вычислить точно

Коллектив ученых из МФТИ, Университета искусственного интеллекта имени Мохаммеда бен Заида (Абу-Даби, ОАЭ), Иннополиса и Сколтеха исследовал задачу решения вариационных неравенств при неточной информации о производных. Им удалось предложить новый численный метод, а также теоретически и экспериментально показать его преимущества перед старыми методами. Работа опубликована в материалах конференции NeurIPS 2024.
В новой статье, представленной на конференции NeurIPS 2024, исследовано влияние неточности якобиана на методы второго порядка, а именно: доказана нижняя оценка сложности (граница быстрее которой методы с неточным якобианом не могут сходится), предложен оптимальный алгоритм и предложены варианты квази-ньютоновской аппроксимации якобиана.
Читать далее