Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет Rodion Déev ([info]deevrod)
@ 2022-06-16 18:23:00

Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Настроение: sick

Кривизна лагранжевых расслоений
Пусть A -- тор. Экспоненциальное отображения для его группы трансляций T(A) устанавливает точную тройку:

H_1(A, Z) \to t(A) \to T(A).

Таким образом, для абелева расслоения X \to B имеется точная тройка пучков

K \to Vert(X/B) \to Aut(X/B).

Пучок K здесь это 'пучок гомологий' слоев с коэффициентами в Z; проблема в том, что гомологии слоев не образуют пучка. В случае неособых слоев эта вольность речи безобидна, но для особых начинают лезть какие-то извращенные пучки. Ну и бог с ними.

В присутствии симплектической формы, когда расслоение X \to B лагранжево, вертикальные векторные поля становятся гамильтоновыми, и тем самым пучок оных изоморфен пучку \Omega^1_B. Стало быть точная последовательность определяет такую последовательность когомологий:

H^0(B, K) \to H^{1,0}(B) \to H^0(Aut(X/B)) \to H^1(B, K) \to H^{1,1}(B) \to H^1(Aut(X/B)) \to H^2(B, K) \to H^{2,1}(B)

ну и будем честны, никому не придет в голову рассматривать многообразие с ненулевой H^{2,1}.

Группа H^1(Aut(X/B)) называется группою Шафаревича-Тейта и обозначается Ш, она имеет связную компоненту Ш^0, полученную факторизацией пространства H^{1,1}(B), в случае лагранжевых расслоений линейного, по плотной дискретной подгруппе, и дискретную часть Ш/Ш^0, изоморфную H^2(B, K). Для симплектических многообразий деформации, соответствующие Ш^0, известны также как вырожденные твисторные. Деформации, соответствующие Ш/Ш^0, более загадочны.

Немного можно однако понять, если рассмотреть самый наипростейший пример -- расслоение E x E' \to E, где E, E' -- неизогенные эллиптические кривые. У этого расслоения нету особых слоев, так что K есть постоянный пучок Z^2. Кусок, где H^0, отваливается от точной последовательности Шафаревича-Тейта: он есть просто описание эллиптической кривой E' как фактора \C по решетке. Вырожденные твисторные деформации соответствуют 'перекосам' прямого произведения: если E x E' \to E можно реализовать как Tot(\O_E) \setminus 0_{}\) mod \lambda, где E = (C \ {0}) mod \lambda, то его деформации будут биголоморфны Tot(L) \setminus 0_L mod \lambda для всевозможных линейных расслоений L \in Pic^0(E) степени нуль. Соответственно, такие факторы для расслоений степени не нуль (поверхности Кодаиры-Терстона) будут получаться как топологически нетривиальные деформации.

Проблема этой теории состоит в том, что поверхность Кодаиры-Терстона для данной степени, данного значения \lambda и данной базы E единственна с точностью до вырожденной твисторной деформации. Поэтому в качестве Ш мы должны брать не всю H^1(Aut(X/B)), а лишь некоторую ее факторгруппу. Присутствие линейной системы K очень раздражает: поскольку для поверхности Кодаиры она меньше, чем для тора, в такой логике выходит, что топологически нетривиальные скручивания Шафаревича-Тейта, видимо, необратимы. А интересен именно обратный процесс: как из лагранжева расслоения с нетривиальным классом (то есть, нетривиальной кривизной -- если мы сумеем определить понятие кривизны для лагранжевых расслоений), а стало быть не имеющим сечения, получить 'плоское', допускающее сечение расслоение. Таким образом, как известно, получаются оба примера О'Грейди; в нашем случае так 'получается' абелева поверхность из поверхности Кодаиры-Терстона (а также, видимо, обобщенное многообразие Куммера из многообразия Богомолова-Гуана)



(Читать комментарии)

Добавить комментарий:

Как:
имя пользователя:    
Вы должны предварительно войти в LiveJournal.com
 
E-mail для ответов: 
Вы сможете оставлять комментарии, даже если не введете e-mail.
Но вы не сможете получать уведомления об ответах на ваши комментарии!
Внимание: на указанный адрес будет выслано подтверждение.
Тема:
Сообщение:



 
Обратите внимание! Этот пользователь включил опцию сохранения IP-адресов тех, кто пишет анонимно.