Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет Misha Verbitsky ([info]tiphareth) в [info]ljr_math
@ 2007-05-17 04:05:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
спектр суммы эрмитовых матриц (Клячко)
Замечательная статья Александра Клячко
"Stable bundles, representation theory and Hermitian operators".

Используя теорему Дональдсона-Уленбек-Яу о
метриках Янг-Миллса на стабильном расслоении,
Клячко описывает множество всех спектров эрмитовых
матриц, которые могут быть получены как сумма
двух эрмитовых матриц с заданными спектрами.

Если кто забыл, спектром оператора (или матрицы)
называется множество корней его характеристического
полинома. Для эрмитовой матрицы, корни вещественные,
и их можно упорядочить по убыванию. Поэтому спектр
есть подмножество R^n.

В ответе получается многогранник, заданный
простыми неравенствами, которые описаны в терминах
мультипликативной структуры на алгебре когомологий
грассманиана. Феноменально красивый результат!

Ссылка для подписчиков либо платная; забесплатно этой
статьи в сети я не нашел, но усеченная версия есть в архиве
http://arxiv.org/abs/math/0304325
(без доказательств).

А теперь вопрос. Пусть есть две матрицы с
заданными собственными значениями. Известно
ли, какие собственные значения могут быть у суммы?
Хочется ответа в духе полученного Клячко. Хотя
бы в простых случаях.

Привет


(Читать комментарии) - (Добавить комментарий)


(Анонимно)
2007-05-17 07:18 (ссылка)
A. Knutson and T. Tao, “The honeycomb model of gln(ℂ) tensor products. I. Proof of the saturation conjecture,” Journal of the American Mathematical Society, vol. 12, no. 4, pp. 1055–1090, 1999.

A. Knutson, T. Tao, and C. Woodward, “The honeycomb model of gln(ℂ) tensor products. II. Puzzles determine facets of the Littlewood-Richardson cone,” Journal of the American Mathematical Society, vol. 17, no. 1, pp. 19–48, 2004.

see refernces there inside

(Ответить)


(Читать комментарии) -