Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет dolmatt ([info]dolmatt) в [info]ljr_math
@ 2021-04-20 15:29:00

Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Настроение: tired
Музыка:Divinyls - I Touch Myself

Единственность единицы в позитивной форме
Формула называется позитивной, если она содержит в качестве логических связок только символы конъюнкции, дизъюнкции и квантификации (но не символ отрицания). Согласно Lyndon's positivity theorem утверждение первого порядка сохраняется при любом гомоморфизме между любыми двумя моделями тогда, когда оно равносильно какому-либо позитивному утверждению. Например коммутативный закон это позитивное утверждение, как следствие всякий гомоморфный образ коммутативной алгебраической системы коммутативен. Несложно придумать пример, когда свойство левой сократимости не выполняется в гомоморфном образе, но выполняется в исходной системе; из этого следует, что данное свойство равносильными преобразованиями невозможно привести к позитивной форме.

Если в произвольной магме существует единица, то выполняется свойство единственности единицы. Доказательство от противного: предположим, что существуют две единицы и , тогда . Следовательно всякий гомоморфизм сохраняет свойство , и, следовательно, эту формулу какими-то хитровыебанными равносильными преобразованиями можно привести к позитивной форме. Как это сделать? Я пытался. У меня ничего не получается. Помогите.



(Читать комментарии)

Добавить комментарий:

Как:
(комментарий будет скрыт)
Identity URL: 
имя пользователя:    
Вы должны предварительно войти в LiveJournal.com
 
E-mail для ответов: 
Вы сможете оставлять комментарии, даже если не введете e-mail.
Но вы не сможете получать уведомления об ответах на ваши комментарии!
Внимание: на указанный адрес будет выслано подтверждение.
Имя пользователя:
Пароль:
Тема:
HTML нельзя использовать в теме сообщения
Сообщение:



Обратите внимание! Этот пользователь включил опцию сохранения IP-адресов тех, кто пишет анонимно.