Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет Rodion Déev ([info]deevrod)
@ 2021-07-13 07:49:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Entry tags:геометрия, геометрия/голоморфная теорема Дарбу

Отображение Валя-Гаусса и голоморфная теорема Дарбу
Пусть есть кривая C \subset P(V), или что то же самое обильное линейное расслоение L \to C (в таком случае V = H^0(C, L)^*). Точка x \in C при вложении в P(V) отображается в отображение вычисления H^0(C, L) \to L_x, или же L_x^* \too H^0(C, L)^* = V. Если есть две разные точки x, y \in C, то секущая xy (воспринимаемая как точка на грассманиане, вложенном по Плюккеру) отправляется во внешнее произведение отображений (ко)вычисления L_x^* \o L_y^* \to \Lambda^2(V). При x = y это отображение не имеет смысла или же нулевое; но при стремлении y \to x возникает нетривиальное отображение L_x^* \o L_x^* \o T_x \to \Lambda^2(V). Дуализировав и посмотрев в семействе, имеем отображение на сечениях \Lambda^2 H(C, L) \to H^0(L^2 \o K_C), названное своим изобретателем Джонатаном Валем гауссовым (хотя классическое гауссово отображение работает для (гипер)поверхностей, не для кривых, а такая штука называется отображением годографа). Мы будем называть его отображением Валя-Гаусса.

Валь заметил следующее: пусть отображение Валя-Гаусса для канонической кривой сюръективно. Тогда эта кривая может быть получена как гиперплоское сечение единственной повехности: конуса над собой. В частности, если кривая лежит на K3-поверхности, её каноническое отображение Гаусса-Валя не сюръективно. Я ещё не изучил доказательство Валя, оно насыщено алгебраическим жаргоном; но последний результат доказали геометрически Бовиль и Мериндоль. Их доказательство тоже изобилует тонкостями, но оно производит впечатление, будто его можно суммировать в следующее

Предложение (Бовиль, Мериндоль). Пусть C \subset X кривая на K3-поверхности. Выкручивая точную последовательность 0 \to T_C \to T_X|_C \to \nu_{X/C} = K_C \to 0, имеем расширение T_C^2 \to T_X|_C \o T_C \to \O_C, сиречь класс в H^1(T_C^2), а по двойственности Серра функционал \xi \in H^0(K_C^3)^*. Этот функционал зануляет образ канонического отображения Валя-Гаусса \Lambda^2(H^0(K_C)) \to H^0(K_C^3).
Доказательство (конечно, неправильное). Деформации кривой рода g на K3-поверхности параметризуются пространством P^g, причём касательное пространство к ним это просто H^0(K_C). Рассмотрим универсальное семейство кривых над этим P^g; имеем относительное отображение Валя-Гаусса \Lambda^2 H^0(K_C) \to H^0(K_C^3), то есть 2-форму с коэффициентами в расслоении кубических дифференциалов. С другой стороны, расслоение кубических дифференциалов снабжено линейной функцией \xi. Компонируя, имеем голоморфную 2-форму на P^g, а такая только одна: нулевая. ■

На самом деле эта форма конечно мероморфная, потому что при приближении кривой к особой она наверняка будет вырабатывать полюс; ну и в оригинальной статье доказательство хотя и короткое, но идёт другим путём. Но всё же интересно: можно ли этому рассуждению придать какой-то смысл? Давайте к примеру рассмотрим открытую поверхность с тривиальным каноническим расслоением, на которой лежит проективная кривая C. Её мгновенные деформации точно так же параметризуются H^0(K_C), и вышеописанная конструкция позволяет снабдить её пространство деформаций голоморфной 2-формой. Можно ли придумать поверхность, для которой эта 2-форма будет ненулевая?



(Добавить комментарий)


(Анонимно)
2021-07-13 12:32 (ссылка)
какие интересные у тебя там Территории, Деев


__________
Wieiner_

(Ответить) (Ветвь дискуссии)


(Анонимно)
2021-07-13 14:03 (ссылка)
Что тут происходит? Опять хуйлашку Перцева накормили немытыми хуями? Ну да ничего нового, все как всегда...

(Ответить) (Уровень выше)


(Анонимно)
2021-07-13 13:26 (ссылка)
Когда уже в epub включат поддержку формул?

(Ответить) (Ветвь дискуссии)


(Анонимно)
2021-07-14 01:20 (ссылка)
казалось бы, при чём тут русня?

(Ответить) (Уровень выше)