Dmitri Pavlov - Ударения
March 26th, 2012
10:44 am

[Link]

Ударения

(61 comments | Leave a comment)

Comments
 
From:[info]myrussia2000.livejournal.com
Date:April 17th, 2012 - 12:00 am
(Link)
получается нельзя для какого-нибудь найденного решения для a^n + b^n = c^n
построить треугольник на евклидовой плоскости? получается вроде так...

может ли это быть доказательством? можете ли вы (при наличии времени конечно) посмотреть или спросить у коллег? было бы интересно....
From:[info]dmitri_pavlov
Date:April 17th, 2012 - 12:38 am
(Link)
>в котором все члены положительные

Нет, конечно, после переноса в одну часть у вас будет полно и положительных и отрицательных членов:
c^2=a^2+b^2−2ab*cos(α), большие проблемы возникают, когда a, b, и c примерно равны, соответственно −2*cos(α) близко к −1.
From:[info]myrussia2000.livejournal.com
Date:April 17th, 2012 - 01:02 am
(Link)
у нас всегда получается тупоугольный треугольник
так как для n > 2, если мы построим мысленно прямоугольный на сторонах a и b, длина c получится меньше, чем необходимо для равенства an+bn = cn

(a^n + b^n)^2 = (a^2 + b^2 + 2abx)^n
a^2n + b^2n + 2*a^n*b^n = a^2n + b^2n + .....

возможно я где-то ошибаюсь, но вроде равенство не выходит
попробую еще кому-нибудь написать :)

спасибо вам, извините, что отнял много время
From:[info]myrussia2000.livejournal.com
Date:April 17th, 2012 - 01:11 am
(Link)
да, ошибаюсь
не факт что равенства нет!

спасибо, извините!!
From:[info]myrussia2000.livejournal.com
Date:April 17th, 2012 - 01:31 am
(Link)
прошу прощения, но все-таки не равны
(a^n + b^n)^2 = (a^2 + b^2 + 2abx)^n

x>0, пусть x = 0 для удобства, возьмем n = 3, раскроем, получим
2ab = 3a^2 + 3b^2
что очевидно не может быть равенством

либо я ошибся в выкладках
ладно, не хочу отнимать время, вы и так сильно помогли, спасибо большое
From:[info]myrussia2000.livejournal.com
Date:April 17th, 2012 - 01:52 am
(Link)
:) вы правы, - там, угол меньше 90

вот черт, отнял время
извините
My Website Powered by LJ.Rossia.org