lqp - Post a comment
[Recent Entries][Archive][Friends][User Info]
|
12:23 am
lqp[Link] |
Хозяйке на заметку. Простой, но чрезвычайно полезный геометрический факт,который до сих пор ускользал от моего внимания. Если покомпонентно усреднить координаты вершин треугольника? то есть ((x1+x2+x3)/3,(y1+y2+y3)/3) - то мы получим координаты точки пересечения медиан треугольника, она же центроид, она же центр масс треугольника.
Таким образом, если нам надо разместить на карте какие-то величины, полученные из треугольника (оси главных напряжений, в моем случае), то вы можете, не мудрствуя особо просто усреднить координаты его вершин и привязать величину к этой точке, что будет не просто быстро, но даже и теоретически обоснованно.
Особо ценно что это работает в любых линейных координатах, не обязательно изотропных и кажется даже не обязательно ортогональных. То есть, на небольших расстояниях может применяться непосредственно к географическим координатам (в градусах, или в единицах карты или в чем угодно). Тем не менее я с благодарностью приму достаточно простую формулу вычисления "центра" (в каком-либо смысле) треугольника на поверхности шара. Я попытался посчитать сам, у меня получилась формула на полторы страницы, и я понял, что скорее всего не смогу без ошибок даже просто переписать ее с бумажки на экран компьютера.
|
|
|
| |