Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет nravov ([info]nravov)
@ 2010-04-09 11:07:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Об уничтожении капитала
Возвращаясь к вопросу о тенденции к уменьшению капитала.

Повышение производительности труда (P) приводит к понижению НЗТ (T) для производства конкретного товара, и соответственно уменьшает величину уже созданного к данному моменту капитала (K). Таким образом, созданию нового капитала в данный момент времени противостоит уничтожение уже имеющегося. Суммарное приращение капитала, dK, во времени можно записать в виде

dK = (1-a)*P*dT - K*(dP/P),
где a - доля товаров народного потребления.

Будем выражать производительность труда P работника через его энерговооруженность, а труд T через затраченное время, человекочасы. Тогда произведение P*dT есть суммарная электроэнергия израсходованная в процессе производства, M*dt где M - потребляемая мощность. Если количество работников постоянно, тогда относительное приращение пр-ти труда, dP/P, выражается в относительном приращении суммарной мощности dM/M. Имеем:

dK/dt = (1-a)*M - (K/M)*(dM/dt). (*)

Здесь две зависящие от времени величины, K и M, но уравнение пока только одно. Можно было бы задаться известной мощностью M(t)



и посмотреть что просходит исходя из уравнения (*) с капиталом K, но функциональную зависимоть M(t) из данных оказалось постигнуть сложно, поэтому я поступил наоборот.

Предположим, что теоретические выкладки классиков остаются верны и для случая быстро меняющейся производительности труда. Тогда должна быть верна и тенденция к понижению нормы прибыли, то есть в первом приближении можно положить dK=0, решить уравнение относительно M и сравнить с табличными данными потребляемой энергии. Решение:

1/M(t) = 1/M_0 - (1-a)/K*t,
где M_0 - мощность потребляемая в момент времени t=0. То есть величина обратная суммарной мощности спадает со временем линейно. Проверяем:



Бинго!

Из подгонки находится величина капитала K = 5*10^5 Twatt-h (с точностью до a).

А также интересный факт что если тенденция продолжится, то мощность станет бесконечно большой в 2033 году.


(Читать комментарии) - (Добавить комментарий)


[info]zogin@lj
2010-04-12 14:02 (ссылка)
Если забухает вся Москва 15 млн и будет выпивать по бутылке в день за 10 долларов, то ей хватит на 950 лет. А если забухает весь мир (6,8 млрд), то всего на 2 года.

Если я не ошибся в подсчетах.

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]nravov@lj
2010-04-12 14:27 (ссылка)
Гыгы.

Но я всё-таки не уверен что это верный способ подсчёта капитала -- перевести электроэнергию в её цену. Надо ещё подумать.

(Ответить) (Уровень выше)


(Читать комментарии) -