Пес Ебленский [entries|archive|friends|userinfo]
rex_weblen

[ website | Наши рисуночки ]
[ userinfo | ljr userinfo ]
[ archive | journal archive ]

Links
[Links:| update journal edit friends fif tiphareth recent comments ]

Моноиды [Jul. 20th, 2024|11:38 pm]
[Tags|, , , , , ]
[Current Mood | annoyed]
[Current Music |Swell Maps - Train Out of It]




Прочитал главу в Мак Лейне про Моноиды.

Моноидальные категории — это категории, есть бинарная операция на объектах и нейтральный объект, которые по своим свойствам напоминают обычный моноид из алгебры. Проблема в том, что все операции определяются с точностью до изоморфизма. И поэтому к структуре добавляются канонические изоморфизмы, из-за чего она получается громоздкой. Видимо из-за этой громоздкости я раньше их и не изучал, это меня отталкивало. Но избавиться от этих канонических изоморфизмов нельзя. На этот счет есть пример Избелла. Примеры моноидальных категорий — это большинство категорий с произведением, категория модулей над коммутативным кольцом с тензорным произведением, а также категории эндофункторов с операцией композиции. Потом Мак Лейн долго доказывает теорему о когерентности. Но по сути, это сложный способ сказать, что порядок расстановки скобок не имеет значения.

В Монодической категориях можно определить объекты-моноиды и объекты с действием моноида на них. Например алгебраические моноиды это объекты-моноиды в категории множеств SET. А моноидальные категории — это объекты моноиды в категории категорий CAT. В категории модулей над коммутативным кольцом — моноиды это алгебры. В категории эндофункторов моноиды — монады. Действие монады Т на эндофунктора, это тоже самое, что факторизация через категорию Т-алгебры. В категории модулей с перевернутыми стрелками, моноиды называются коалгебрами, а объекты на которые они действуют — комодулями.

Одна из основные причин, почему я решил прочитать эту главу — это то, что тут написано про симплициальную категорию. Симплициальные категория состоит из неотрицательных целых чисел, которые понимаются как множества вида {0,1,...,n-1}. Морфизмами в это категории служат монотонные функции. Но все можно породить используя "элементарные комбинаторные операции со списками" типа "cкопировать с повтором" и "cкопировать с пропуском". Это категория симплициальная, потому что существует стандартный функтор от туда, который сопоставляет каждому числу n симплекс на n вершинах. При этом операция "cкопировать с повтором" превращается во вложить в симплекс большего размера как грань, в "cкопировать с пропуском" в спроецировать на грань.

Контравариантные функторы из симплициальной категории называются симплициальными объектами. При этом очень важно, куда переходят "элементарные комбинаторные операции со списками". И если финальная категория является абелевой, то использую знакопеременную сумму операций типа "проекция на грань" можно получить оператор границы. И этот оператор границы определяет цепной комплекс в этой абелевой категории. Поэтому каждый симплициальный объект в абелевой категории задает последовательность гомологий. Например, если взять топологическое пространство X, то последовательность свободных абелевых групп, порожденных всеми свободными всеми непрерывными отображениями из n-cимплексов в Х задает симплициальный объект. И его гомологии называются сингулярными гомологиями пространства X.

Почему монады и симплициальные категории обсуждаются в одной главе. Думаю, дело не только в том, что симплициальная категория сама по себе является моноидальной с операцией сложения. Дело в том, что объект единичка является своего рода универсальным для моноидов. Поэтому любой моноид порождает симплициальный объект. Это относится и к обычным моноидам и группам, взятым как объектами в категории SET. Эти эти симплициальные объекты можно продолжить дальше в категорию абелевых групп взяв свободные абелевы группы. И в итоге мы снова получаем цепной комплекс и уже гомологию и когомологию групп. Мне эта конструкция напомнила нерв категории, еще один симплициальный объект, если рассмотреть группу как категорию из одного элемента. Также замечу тут, что все симплициальные множества являются предпучками, поэтому их категория ведет себя хорошо.

Потом Мак Лейн определяет категорию компактно-порождённых пространств, как категорию удобную для топологической теории гомотопий. Основная проблема обычной категории топологических пространств заключается в том, что там нет экспоненциального объекта, который бы мог моделировать пространство отображений из одного пространства в другое взятое с открыто-компактной топологией. Категории компактных или локально компактных пространств обладают экспоненциальным объектом, но они не замкнуты под некоторыми другими важными операциями. Компактно-порожденные пространства решают эту проблему. Для категории компактно порождённых пространства с отмеченной точкой Мак Лейн рассматривает операцию смеш-произведения, которая оказывается сопряженной экспоненцированию. Это похоже на известную по теории топосов сопряженность произведения и экспоненцирования, связанной с популяризированной функциональным программированием операцией каррирования. Экспоненцирование с объектом "окружность" дает функтор "пространство петель". А смеш-произведение с объектом "окружность" дает функтор "надстройка". Эти функторы сопряжены и они задают монаду.

image
Надстройка

В целом это все довольно полезный взгляд на алгебраическую топологию через призму теории категорий. Эти операции типа пространства петель и надстройка довольно элементарны. Но взгляд на них через теорию категорий делает теорию про них глубже. И я рекомендую прочитать эту главу тем, кого интересует алгебраическая топология. Думаю, мне тоже было полезно прочитать эту главу для расширения кругозора. Потому что на первом этапе ее развития именно алгебраическая топология была основным драйвером развития теории категорий.
Link184 comments|Leave a comment

navigation
[ viewing | most recent entries ]