| Настроение: |  tired | 
| Музыка: | О. Болдырев - КОШКА | 
| Entry tags: | .il, math, travel | 
В Хайфе 
В Хайфе до 21-го июля.
Вещаю в Тель-Авиве (13 и 15 июля, 13:00-14:30,
Schreiber 008), доклады:
"Symplectic packing on simple Kahler manifolds,
 hyperkahler manifolds and tori",
"Hypercomplex manifolds of quaternionic
dimension 2 and HKT-structures,"
в Вейцманне 17-го, 14:00,
"Kahler threefolds without subvarieties."
Абстракты выступлений:
"Symplectic packing on simple Kahler manifolds,
 hyperkahler manifolds and tori",
 Let $M$ be a compact symplectic manifold
 of volume $V$. We say that $M$ admits a full
 symplectic packing if for any collection $S$
 of symplectic balls of total volume less than
 $V$,  $S$ admits a symplectic embedding to $M$.
 In 1994, McDuff and Polterovich proved that
 symplectic packings of Kahler manifolds can
 be characterized in terms of Kahler cones of
 their blow-ups. When $M$ is a Kahler manifold
 which is not a union of its proper subvarieties
 (such a manifold is called simple) these Kahler
 cones can be described explicitly using Demailly
 and Paun structure theorem for Kahler cones.
 It follows that any simple Kahler manifold admits
 a full symplectic packing. This is used to show
 that compact tori and hyperkahler manifolds
 with irrational symplectic form admit a
 full symplectic packing. This is work in
 progress, joint with Michael Entov.
* * * 
"Hypercomplex manifolds of quaternionic
dimension 2 and HKT-structures,"
Hypercomplex manifold is a manifold with three
complex structures generating a quaternion algebra.
Hypercomplex geometry is a quaternionic counterpart of
complex geometry; however, compact hypercomplex manifolds
almost never admit a Kahler structure (if they
do, they are automatically hyperkahler, quite rare
but much better understood).
Kahler metric is a metric which is locally a
complex Hessian of a function, called "a Kahler potential".
HKT metric on a hypercomplex manifold is a natural
analogue of a Kahler metric on a complex manifold.
HKT metric is a metric which is locally defined as a
quaternionic Hessian of a function, called "HKT potential".
We push this analogy further, proving a quaternionic
analogue of Buchdahl-Lamari's theorem for complex surfaces.
Buchdahl and Lamari have shown that a complex surface M
admits a Kahler structure iff $b_1(M)$ is even. We show that
a hypercomplex manifold M with trivial canonical bundle
(more precisely, with Obata holonomy SL(2, H))
admits an HKT structure iff $H^{0,1}(M)$ is even.
Its proof is suprisingly easier than the proof of
Buchdahl and Lamari, which involves regularization of
positive currents; no regularization is necessarily
(or possible) in quaternionic situation. This is a
joint work with Geo Grantcharov and Mehdi Lejmi.
I will try to explain all terms to make the lecture
accessible for anybody with basic knowledge of
differential and algebraic geometry.
* * * 
 Kahler threefolds without subvarieties.
 Let $M$ be a compact Kahler 3-fold without
 non-trivial subvarieties. We prove that $M$ is a
 complex torus.
 The proof is based on Brunella's
 fundamental theorem about structure of 1-dimensional
 holomorphic foliations and Demailly's regularization
 of positive currents. This is a joint work with
 F. Campana and J.-P. Demailly. I will try to
 explain all notions to make the  lecture accessible
 for anybody with basic knowledge of differential
 and algebraic geometry.
Израильская мобила, если что, 0549484954
но я не очень умею ей пользоваться.
Поселились в  Бат-Галиме, потому как дешево и у моря.
Не русскоязычных тут, по-моему, просто нет, 
всюду дикая грязь, русские магазины, кошки, помойки,
хрущобы, кошки. Конотоп, натурально. В квартире два 
зомбоящика, русских каналов больше, чем нерусских. 
Отключили оба, с отвращением, сколько можно.
Со дня на день жду восстания зомби, по всему Конотопу, с 
требованиями прекратить геноцид преследования
русскоязычных и #ПутинВведиВойска.
На юге война, но досюда не долетает.
Привет