Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет Misha Verbitsky ([info]tiphareth)
@ 2021-04-13 17:27:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Настроение: sick
Музыка:Genesis Live Bataclan France 16mm January 10, 1973
Entry tags:math

Grothendieck-Teichmueller group, operads and graph complexes: a survey
Хорошее
https://arxiv.org/abs/1904.13097
Grothendieck-Teichmueller group, operads and graph complexes: a survey
Sergei Merkulov

душеполезный ликбез от Меркулова про Коно-Дринфельда,
мальцевские пополнения, Гротендика-Тейхмюллера
вот это все

в свое время я очень нуждался в человеческом
введении в мальцевские пополнения, для студентов,
вот это оно и есть



(Читать комментарии) - (Добавить комментарий)


(Анонимно)
2021-04-23 19:01 (ссылка)
Кажется, понял, что вы хотите сказать. В введении к вашей статье про склейку производных категорий сформулированы вопросы про симплициальные множества. Про это напишу в конце.

Подход, про который я писал выше, на ваши вопросы почти ничего не отвечает, а отвечает на вопрос, которым впервые всерьез занимался Том Лейнстер - вопрос, что такое нерв, у чего вообще бывает нерв, и как из понятия категории получается Delta. Развитие идей Лейнстера - Monads with arities and their associated theories. В качестве примера там разобрано, что такое нерв группоида, и показано, что возникает там не Delta, а Delta_sym.

На вопрос Лейнстера есть другой ответ, более простой. В общем случае этот ответ дает другие категории, и есть примеры, где новые категории - правильные. Более же ценно то, что этот ответ существует не сам по себе, а в контексте.

Этот контекст неявно есть в машине Сигала. Реально категория Gamma там - это локализация другой категории. Как известно, на самом деле локализация категории - это бесконечность-категория. Но для Gamma получается обычная категория. Поэтому машина Сигала и работает.

Категории подобные Gamma - тоже обычные категории. А вот какая категория вместо Delta_sym должна быть для группоидов, и категория ли вообще, - это пока не известно. То же самое не известно в случае "локализации категорий" вместо "группоида".

---
Теперь к вопросам из вашей статьи. Если что, я от бесконечность-науки очень далек, и просто когда-то пытался ее понять.

Симплициальные предпучки естественно возникают из локализации.
https://mathoverflow.net/a/58597
https://golem.ph.utexas.edu/category/2010/03/a_perspective_on_higher_catego.html#c032227

Что же до расслоений Гротендика, то сейчас даже аналог соответствия дискретные расслоения <-> предпучки - это что-то нетривиальное. В недавней книге Cisinski это соответствие вроде бы сделано на языке квази-категорий, без ссылок на другие модели, и это соответствие там - один из главных результатов (стр. xii-xiii). Есть ли от этого хоть какая-то польза - не знаю.

(Ответить) (Уровень выше) (Ветвь дискуссии)


(Анонимно)
2021-04-23 20:39 (ссылка)
Да пошел ты нахуй.

(Ответить) (Уровень выше)


[info]kaledin
2021-04-24 02:04 (ссылка)
Уважаемый, вы правда думаете, что я не в курсе всего вот этого вот?

Лейнстер абсолютно замечательный, человек с идеальным вкусом. И вопросы у него замечательные. А приведенные вами ответы на них -- нет. И то же верно про деятельность Сизинского и пр. Просто иногда прежде чем отвечать, надо подумать; а если ничего толкового не придумывается, то лучше промолчать. Но при современном устройстве математической жизни немногие, увы, могут себе это позволить.

(Ответить) (Уровень выше)


(Читать комментарии) -