Comments: |
From: | (Anonymous) |
Date: | April 10th, 2024 - 10:56 am |
---|
| | | (Link) |
|
https://static.timesofisrael.com/blogs/uploads/2020/12/tol.jpg
можешь сказать какой группе соответсвует каббалистическое древо как на картинке?
From: | (Anonymous) |
Date: | April 10th, 2024 - 12:39 pm |
---|
| | | (Link) |
|
второй
From: | (Anonymous) |
Date: | April 10th, 2024 - 12:46 pm |
---|
| | | (Link) |
|
почему? мне казалось группе с 10 элементами, но я не знаю какой именно и сколько вообще есть групп с 10 элементами.
From: | (Anonymous) |
Date: | April 10th, 2024 - 12:52 pm |
---|
| | ищем тут | (Link) |
|
https://en.wikipedia.org/wiki/List_of_small_groups
From: | (Anonymous) |
Date: | April 10th, 2024 - 01:05 pm |
---|
| | Re: ищем тут | (Link) |
|
там написано, что есть только одна группа с 10 элементами и она циклическая, так что это точно не каббалистическое древо. просто графическому изоюражению древа должен соотсветсовтать какой-нибудь граф кейли, но мб это не группа будет, а другая алгебраическая структура.
From: | (Anonymous) |
Date: | April 10th, 2024 - 07:30 pm |
---|
| | Re: ищем тут | (Link) |
|
А я тут вспомнил как когда занимался математикой в школе ко мне подкрались несколько еретических, шизовых мыслей и я их объединил в одну схему (https://ibb.co/JtgHsTr) Я всегда представлял числа как две линии расходящиеся от нуля, при этом мне казалось, что эти линии искривляются (как бы из-за увеличения кол-ва простых множителей в крупных числах, такая странная мысль) и сходятся в точке omega, образуя круг; omega это аналог нуля, место где сходятся очень большие числа с двух направлений. Однако, потом мне показалось, что почему бы не придумать ещё две линии с числами, которые лежат под углом 90 градусов к оси +-, и эту новую ось можно обозначить например *#, и таким образом они тоже сходятся в точке omega получается такой шар как будто делишь апельсин на 4 части. Ну в итоге в нуле пересекаются очень малые числа направлений +- и *№ и в омеге +-infinity и *#infinity. Это я к чему - прочитав пост про Артура Гордона Пима я подумал, что моя диаграма похожа на изображение глобуса, где один из полюсов это точка omega и в там живёт Снежная Королева!
Очень круто, действительно прозрение.
Вы молодец, придумали компактификацию.
From: | (Anonymous) |
Date: | April 10th, 2024 - 07:56 pm |
---|
| | Re: ищем тут | (Link) |
|
А что это такое? Мне просто интересно - чет похожее есть в математике, ну на уровне интуиции хотя бы?
Ну, грубо говоря, пространство компактно, если ни одна последовательность не может убежать. А убежать она может либо в дырку, либо на бесконечность.
И интуитивно понятно, что дырку можно замкнуть точкой. Но тогда хочется и про бесконечность думать как про дырку, которую можно заткнуть. И действительно так можно сделать. Если взять прямую, то получиться пространство, устроенное как окружность. А если сделать такое с плоскостью, то — сфера. Это называется одноточечной компактификацией.
Но, можно, например, заткнуть бесконечность двумя точками, и тогда получится пространство устроенное как замкнутый отрезок. Но два — это не предел. Например, можно говорить о разных степенях бесконечности, или считать что четные числа сходятся к одной бесконечности, а нечетные к другой. Если одно-точечная компактификация минимальная, то можно построить максимальную компактификацию, напихав туда сразу все виды бесконечностей. Такое пространство называется компактификацией Стоуна-Чеха.
Можно также дырку заклеивать не точкой, а например обручем. И тогда получится пространство похожее на цилиндр. Этот процесс связан с устранением сингулярности или раздутиями. Им часто пользуются в математической физики для описания черных дыр.
From: | (Anonymous) |
Date: | April 11th, 2024 - 05:42 pm |
---|
| | Re: ищем тут | (Link) |
|
Прикольно!
From: | (Anonymous) |
Date: | April 11th, 2024 - 08:49 pm |
---|
| | Re: ищем тут | (Link) |
|
Я слежу за тобой, и ты мне нравишься! (NOT GAY)
From: | (Anonymous) |
Date: | April 10th, 2024 - 08:17 pm |
---|
| | Re: ищем тут | (Link) |
|
https://en.wikipedia.org/wiki/Penrose_diagram полюс - это будущая бесконечность. сингулярность - когда оторван кусочек вокруг него.
как-то за столом мой знакомый сложил салфетку треугольником и отогнул уголок. я: "стой, дай это мне немедленно, это ж черная дыра"
From: | (Anonymous) |
Date: | April 10th, 2024 - 12:48 pm |
---|
| | | (Link) |
|
kak u khuilashki, 1ja gruppa invalidnosti anusa
From: | (Anonymous) |
Date: | April 10th, 2024 - 05:39 pm |
---|
| | | (Link) |
|
или 2ja kak u bogoёба
From: | (Anonymous) |
Date: | April 10th, 2024 - 03:08 pm |
---|
| | | (Link) |
|
Почему это должна быть группа. Это модель некой геометрии, вопрос какие еще модели у нее есть
Да не факт, что это должна быть группа.
У Кроули в книге the Vision and the Voice, эти сефиры образовывали довльно сложные стркутуры-ярусы, а потом еще проецировались друг на друга как тени.
Так, что может там смысл не в группах а в гомологических последовательностях.
From: | (Anonymous) |
Date: | April 10th, 2024 - 06:12 pm |
---|
| | | (Link) |
|
Есть какие-нибудь нетривиальные мысли по поводу persistent homology?
From: | (Anonymous) |
Date: | April 12th, 2024 - 05:06 am |
---|
| | | (Link) |
|
Пиши новый поцт, ато здесь переполнение
From: | (Anonymous) |
Date: | April 13th, 2024 - 03:18 am |
---|
| | | (Link) |
|
не указувай сам регистрируйся и пили говнопосты каждый день за ради шизоанона
| |