Прощание с двойственностью |
[Mar. 28th, 2024|01:18 am] |
[ | Current Mood |
| | sleepy | ] |
[ | Current Music |
| | Frankenstein is obsessed with the Illuminati | ] |
 
Когда я взял в лапки Джонстона, то моей целью было изучение равномерных локалей и локалических топосов. Но там не было ничего про это и в какой-то момент мне надо было перейти на книгу Пикадо-Пультра. Я планировал сделать это раньше, но увидел, что для равномерных локалей мне не хватает двух тем: полностью регулярны локалей и компактификации Стоуна-Чеха для локалей. Но я увидел, что следующая глава Джонстона как раз начинается с этих тем. И я решил прочитать ее целиком. Вторая половина этой главы внезапно оказалась посвящена теме коммутативных С*-алгебр и классической двойственности Гельфанды.
Но нужно сказать, что изложение этой теме у Джостона весьма отличается о того, что я видел в других местах. Во первых С* алгебры у него не комплексные, а действительные, и никакая операция * (сопряжение) вообще не упоминается, а вместо структуры сопряжения используется структура упорядоченной алгебры. Собственно в этой интерпретации теорема Гельфанда-Наймарка-Стоуна выглядит так, что каждая С*-алгебра может быть представлена как алгебра ограниченных непрерывных функций на компактном хаусдорффовом пространстве, ее спектре. Отсюда следует эквивалентность категорий С*-алгебра и категории двойственной к компактным хаусдорффовым пространствам, что и составляет классическую двойственность Гельфанда.
Мне кажется, что благодаря чтению Джонстона я понял вышеупомянутые темы намного лучше, чем после Энгелькинга. Но надо учитывать, что у меня уже был опыт знакомства с ними. Главное, что я понял, что книга Джонсона не про локали, а про теоремы о двойствености, подобные двойственности Гельфанда. Фрейма и Локали используются там только как инструмент, и это кажется самым здравым подходом к ней. Это делает Пикадо-Пультра единственной полноценной математической книгой по бесточечной топологии. Причем отнюдь не здоровой, и болезненный фанатизм ее авторов вселяет в мое сердце страх. Фанатизм в деле переписывания теорем общей топологии для безточечного случая. Но давайте вернемся в Джонстону. Я просмотрел содержание оставшихся глав, которые разбирать не буду в обозримое время:
глава V: cпектальные пространства для колец вообще. Спектры Пирса и Зариского. более тесное взаимодействия с коммутативной алгеброй. Возможны приложения в действительной алгебраической геометрии.
глава VI: Довольно загадочная глава. Но посмотрел про что там написано, и это, например, двойственность Понтрягина. Но многие детали в доказательствах, которые требуют меры Хаара, пропущены. Может когда-нибудь вернусь к этой главе, когда вернусь к топологическим группам.
глава VII: Это про двойственность локально-компактных пространств и непрерывных решеток. Не очень пока представляю зачем мне это нужно.
Но есть интересные темы связанные с двойственностью, которые у Джонстона не описаны. Например можно вместо С*-алгебр использовать коммутативные алгебры фон Неймана. Тогда в качестве двойственной категории будет получаться подобие измеримых пространств. С другой стороны можно дальше и отказаться от коммутативности. Известных двойственных пространств для таких алгебр. Но можно просто назвать двойственную к С*-алгебрам категорию некоммутативными топологическими пространствами, а двойственную к алгебрам фон Неймана некоммутативными измеримыми пространствами. Когда я искал информацию по этой теме, мне попала в лапки книжка Конна. Это не учебник, а скорее что-то вроде большого обзора с описанием истории предмета и приложениий, например к физике и фракталам. Там много красивых иллюстраций на этот счет. И я рекомендовал бы для знакомства с предметом. В целом такой взгляд на некоммутативную геометрию заставил меня получить большое чувство удовлетворения от того, что я увидел столько "абстрактной математики за работой". К сожалению в ближайшее время не планирую туда углубляться, но вот какие вопросы там меня интересуют:
1) Некоммутаивная теория меры вообще, связь со случайными матрицами, свободная вероятность 2) Верно ли, что констриируя категорию некоммутативных пространства, вместо комплексных С*-алгебр с сопряжениям можно взять действительные алгебры со структурой порядка и получить ту же категорию? |
|
|