Пес Ебленский [entries|archive|friends|userinfo]
rex_weblen

[ website | Наши рисуночки ]
[ userinfo | ljr userinfo ]
[ archive | journal archive ]

Links
[Links:| update journal edit friends fif tiphareth recent comments ]

Гипногогический диграф и сюрреалистические алгебры [Sep. 12th, 2023|07:55 pm]
[Tags|, , , , ]
[Current Mood | tired]
[Current Music |Goodbye Volcano High]

В посте https://lj.rossia.org/users/rex_weblen/198036.html Я писал.
>Меня задел момент, когда МакЛейн писал, что в классических алгебраических категориях не может классификатора подобъектов. Потому что такой классификатор должен содержать в себе изоморфную копию, любого объекта этой категории. Например, это могла бы быть группа, содержащая в себе все группы. И конечно, такого не бывает. Но с этой задачей могла бы справиться модель-монстр теории групп из теории моделей. Она, конечно, не была бы множеством. Но если придумать другое определение категорий и топосов, чтобы можно было использовать два типа объектов, например, группы-классы и группы-множества. Причем переделать все универсальные кванторы только по группам-множествам, а все экзистенциональные кванторы, и по группам множествам, и группам классов. И тогда модель-монстр можно использовать как классификатор подобъектов. И эти классические алгебраические категории тоже будут элементарные топосами.


Мне кажется я нашел правильную формулировку этой идеи. Это Алгебраическая Теория Множеств, которую придумал тот самый Мурдяк, который рифмуется со Шмурдяк, в 1990-х годах. Толька там речь шла про маленькие и большие стрелки в категории. Сами авторы пишут, что это в некотором смысле обобщение топосов.

Если в конфигурации получиться найти классифицирующий объект, например для групп, то интересный вопрос как будет устроена соответствующая алгебраическая структура. Я не ожидаю, что это будет алгебра Гейтинга. В Алгебраической теории множеств базовая структура это суп-решетка. Понятно только что в случае групп классифицирующих объектом будет что-то вроде модели монстра также известной как мать всех групп. И понять как эта структура устроена как объект-алгебра очень интересна. Для упорядоченных абелевых групп кажется такой моделью будут сюрреалистические числа.

И оказывается, замечательный бразильский математик уже проделал эту работу в своей диссертации. И теперь мне не нужно ею заниматься. Cпасибо большое ему. Мне понравился ее общий яркий язык этой диссертации, например, там упоминаются гипногогические диграфы и сюрреалистические алгебры.

Другая причина не заниматься этим вопросом это опыт алгебраической геометрии. Аналогом такова классификатора подобъектов там был универсальный домейн Вейля, модель монстр алгебраически замкнутых полей. И как говорит в статье универсальный домен были вытеснен схемами Гротендика. Поэтому, например, для абалевых групп, если взглянуть на них, как на Z-модули, правильным подходом было бы рассматривать схемы над Z. И этот путь привел метематиков к современной арифметической геометрии. А что делать с некоммутативными структурами я толком не могу представить, но там тоже есть свои схемы.
Link20 comments|Leave a comment

navigation
[ viewing | most recent entries ]