Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет Misha Verbitsky ([info]tiphareth)
@ 2018-06-07 17:43:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Настроение: sick
Музыка:Delerium - SPIRITUAL ARCHIVES
Entry tags:math

двойственно по Пуанкаре пересечению многообразий
Написал образцово короткое доказательство
двойственности Пуанкаре:
http://verbit.ru/IMPA/TOP-2018/cohomology-09.pdf
как-то не ожидал даже. По этому случаю, образовался
лишний час, который следует забить доказательством
того, что произведение в когомологиях (де Рама)
двойственно по Пуанкаре трансверсальному
пересечению многообразий.

А какой самый простой способ сие увидеть, без
махания руками и по возможности элементарно?
Я чего-то ничего толкового сходу придумать не могу.

Привет



(Читать комментарии) - (Добавить комментарий)


[info]grigori
2018-06-09 04:55 (ссылка)
щас, а почему оно на точке вычисляет то, что надо?

У точки есть один сингулярный 1-куб, его граница это ноль (разница концов, которые они одинаковы). Сингулярный 2-куб у точки тоже один, и его граница тоже ноль, потому что у квадрата четное число сторон. Получается класс в первых гомологиях точки!

видимо, надо факторизоваться по вырожденным кубам, чтобы оно нормально работало, а это точно повлечет много еботни

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]tiphareth
2018-06-09 05:22 (ссылка)
ну значит, надо профакторизоваться, четам
спасибо, занятно

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]kaledin
2018-06-09 12:44 (ссылка)
Да, надо факторизоваться, причем надо еще понять, какие вырожденные, и какие отображения между кубами ты вообще учитываешь. По-видимому у кубов надо упорядочить образующие векторы, и допускать вложения граней/проекции вдоль граней, которые совместимы с порядком. Дифференциал про этом получится сложнее, чем в симплексах, отображение Кюннета возможно проще (за знаки не поручусь). Противоречия с коммутативностью нет, т.к. из-за упорядочивания оно все равно некоммутативно.

В сухом остатке, в кубах сложнее дифференциал, больше комбинаторки, и надо нормализовать, в симплексах проще комбинаторика и дифференциал, можно не нормализовать, но сложнее отображение Кюннета. Конечно, более сложный дифференциал в кубах "имеет геометрический смысл", но отображение Кюннета в симплексах его тоже имеет, триангуляция произведения двух симплексов, невелика премудрость. Поэтому, по-видимому, кубы и не прижились.

(Ответить) (Уровень выше)


[info]kaledin
2018-06-09 22:36 (ссылка)
Кстати, на всякий случай, про отображение Кюннета (т.е. триангуляцию произведения симплексов). Комбинаторика там очевидная, если воспринимать симлекс как мн-во точек на отрезке с суммой ноль. Ты кидаешь два таких множества на отрезок, и видишь, что есть один дискретный инвариант -- в таком порядке точки перетасуются. Это и есть симплексы старшей размерности в триангуляции.

(Ответить) (Уровень выше)


[info]polytheme
2018-06-09 16:57 (ссылка)
а как вообще определяется отображение на грани ?

это же должно быть отображение канонического куба, а его можно вложить даже
не сходу посчитаешь сколькими способами в грань; точнее, 2^n * n! способами,
если я не обсчитался.

это вложение причем надо согласовать, чтобы d^2 = 0. или нет ?

на симплексе есть каноническое вложение упорядочением вершин.

спасибо, очень хороший комментарий, объясняющий, в частности, почему в Ф.-Ф.
написано, что ~"гомологии, наоборот, легко считать, но трудно определить
и доказать корректность".

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]grigori
2018-06-10 22:53 (ссылка)
ну это как раз несложно - вершины куба это последовательности из нулей и единиц, грань задаётся уравнением "i-тая координата = c", чтобы на неё ограничиться, надо зачеркнуть c, знак зависит от того, ноль это был или единица

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]polytheme
2018-06-10 22:58 (ссылка)
а ну да.
почему-то со стороны гомологий мне это казалось более загадочно
(хотя действительно, наоборот, вложение грани есть добавление
пропущенной координаты, с соотв. знаком)

(Ответить) (Уровень выше)


[info]polytheme
2018-06-10 23:00 (ссылка)
погоди, а четность координаты не надо добавить ?
иначе ребро входит с одинаковым знаком от обеих граней, нет ?

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]grigori
2018-06-10 23:22 (ссылка)
точняк, надо

(Ответить) (Уровень выше)


[info]polytheme
2018-06-09 19:29 (ссылка)
то есть они конечно гомотопные, но, наверное, d^2 = 0 с точностью до гомотопии не очень хорошо ?

(Ответить) (Уровень выше)


(Читать комментарии) -