Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет Misha Verbitsky ([info]tiphareth)
@ 2024-07-05 13:44:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Настроение: sick
Музыка:План ПланЫч + АГНИЯR - A.D.Тел (1990-2000)
Entry tags:.il, math, travel

вещаю в tau.ac.il
Вещаю походу в Тель-Авиве

Math Colloquium: Misha Verbitsky (IMPA / HSE)
Hyperbolic groups are not Ulam stable
Mon, July 8, 12:15pm – 1:15pm

Let G be a Lie group equipped with a left-invariant
Riemannian metric d, and Γ any group. An ε-homomorphism
is a map ρ:Γ→G which is "not far" from a
homomorphism. More formally, an ε-homomorphism is a map
ρ:Γ→G satisfying d(ρ(xy),ρ(x)ρ(y)) < ε for all x,y ϵ Γ. A
group Γ is called Ulam stable if any ε-homomorphism Γ→
U(n) can be approximated by homomorphisms. Ulam stability
was originally treated by D. Kazhdan (1982), following a
question of V. Milman. Kazhdan has proven that all
amenable groups are Ulam stable. Then he constructed an
ε-homomorphism ρ:Γ→U(n), for any given ε >0,which cannot
be 1/10-approximated by a homomorphism, where Γ is the
fundamental group of a genus 2 Riemann surface. I would
give a geometric version of his construction, and
construct an ε-homomorphism ρ:Γ→G which cannot be
1/10-approximated for any Lie group G, where Γ is the
fundamental group of a compact Riemannian manifold of
strictly negative sectional curvature. This is a joint
work with Michael Brandenbursky.

Math Colloquium meetings take place on Mondays 12:15-13:15
in Schreiber building, room 006

* * *

Thursday, July 11, 2024, 16:15-17:45, Schreiber 309

Mikhail Verbitsky
(IMPA, Rio de Janeiro, and HSE, Moscow)
Complex geometry and the isometries of the hyperbolic space

The isometries of a hyperbolic space are classified into
three classes - elliptic, parabolic, and loxodromic; this
classification plays the major role in homogeneous
dynamics of hyperbolic manifolds. Since the work of Serge
Cantat in the early 2000-ies it is known that a similar
classification exists for complex surfaces, that is,
compact complex manifolds of dimension 2. These results
were recently generalized to holomorphically symplectic
manifolds of arbitrary dimension. I would explain the
ergodic properties of the parabolic automorphisms, and
prove the ergodicity of the automorphism group action for
an appropriate deformation of any compact holomorphically
symplectic manifold. This is a joint work with Ekaterina
Amerik.

* * *

ну и до кучи, 14-го в HUJI.

Привет



(Читать комментарии) - (Добавить комментарий)


(Анонимно)
2024-07-07 22:53 (ссылка)
Всегда есть Deepl Write. Исправляет на паст симпл, разумеется:

https://www.deepl.com/en/write#en/%0ALet%20G%20be%20a%20Lie%20group%20equipped%20with%20a%20left-invariant%0ARiemannian%20metric%20d%2C%20and%20%CE%93%20any%20group.%20An%20%CE%B5-homomorphism%0Ais%20a%20map%20%CF%81%3A%CE%93%E2%86%92G%20which%20is%20%22not%20far%22%20from%20a%0Ahomomorphism.%20More%20formally%2C%20an%20%CE%B5-homomorphism%20is%20a%20map%0A%CF%81%3A%CE%93%E2%86%92G%20satisfying%20d(%CF%81(xy)%2C%CF%81(x)%CF%81(y))%20%3C%20%CE%B5%20for%20all%20x%2Cy%20%CF%B5%20%CE%93.%20A%0Agroup%20%CE%93%20is%20called%20Ulam%20stable%20if%20any%20%CE%B5-homomorphism%20%CE%93%E2%86%92%0AU(n)%20can%20be%20approximated%20by%20homomorphisms.%20Ulam%20stability%0Awas%20originally%20treated%20by%20D.%20Kazhdan%20(1982)%2C%20following%20a%0Aquestion%20of%20V.%20Milman.%20Kazhdan%20has%20proven%20that%20all%0Aamenable%20groups%20are%20Ulam%20stable.%20Then%20he%20constructed%20an%0A%CE%B5-homomorphism%20%CF%81%3A%CE%93%E2%86%92U(n)%2C%20for%20any%20given%20%CE%B5%20%3E0%2Cwhich%20cannot%0Abe%201%5C%2F10-approximated%20by%20a%20homomorphism%2C%20where%20%CE%93%20is%20the%0Afundamental%20group%20of%20a%20genus%202%20Riemann%20surface.%20I%20would%0Agive%20a%20geometric%20version%20of%20his%20construction%2C%20and%0Aconstruct%20an%20%CE%B5-homomorphism%20%CF%81%3A%CE%93%E2%86%92G%20which%20cannot%20be%0A1%5C%2F10-approximated%20for%20any%20Lie%20group%20G%2C%20where%20%CE%93%20is%20the%0Afundamental%20group%20of%20a%20compact%20Riemannian%20manifold%20of%0Astrictly%20negative%20sectional%20curvature.%20This%20is%20a%20joint%0Awork%20with%20Michael%20Brandenbursky.

(Ответить) (Уровень выше)


(Читать комментарии) -