Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет Misha Verbitsky ([info]tiphareth)
@ 2007-07-03 03:47:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Настроение: tired
Музыка:Альтернативная Космонавтика -- 5.03.1995 Дом Ученых
Entry tags:math, smeshnoe

гиперпростое множество
Среди прочего, Шень рассказал мне, что есть гиперпростое
множество.
Это рекурсивно перечислимое множество A,
обладающее следующим свойством. Обозначим
n-й (в порядке возрастания) элемент дополнения к A
за b_n. Тогда последовательность {b_n} растет
быстрее любой вычислимой функции

Числа Грэма
отдыхают, они растут ниибацца быстро,
но таки гораздо медленнее.

Еще есть максимальное множество,
это перечислимое множество A, такое, что любое
перечислимое множество, содержащее A, отличается
от A либо от натурального ряда на конечное множество.

Максимальные множества гиперпросты (это, кажется, ясно).
Также максимальные множества образуют орбиту относительно
группы вычислимых и обратимых подстановок натурального
ряда, сохраняющих перечислимые множества, с точностью
до конечных.

Конструктивная математика!

По степени живительной бредовости эта наука круче
ультрафильтров вдесятеро. Круче и неконструктивнее:
однако явных примеров максимального множества наука,
кажется, не ведает, несмотря на многочисленные
работы, им посвященные. При взгляде на подобное
сторонники финитизма должны биться в жутком
припадке и грызть на себе гениталии. Логически
рассуждая.

Обожаю всякую экзотическую математику.
Википедия замечательная штука, там подобного
дофигища.

Привет



(Читать комментарии) - (Добавить комментарий)


[info]kouzdra
2007-07-03 12:38 (ссылка)
хотя я тоже слышал, что в роботехнике топосам нашли полезные применения

Там на самом деле сейчас дедуктивным системам нашли применение. Причем важное. А топосы и т.п. там вылезают поскольку тема смежная.

Ну и есть еще один момент - диаграмки со стрелочками в компьютер запихивать по понятным причинам намного проще, чем кардиналы-ординалы. Те, по большому счету, вообще непонятно как запихивать. Это привет рассужденям о "природе вычислений".

Ее нельзя до конца довести, ибо актуальные темы в логике (форсинг, колмогоровская сложность, P/NP) требуют года-двух минимум, а в математике никак не применяются

Дело в том, что они и в компьютерщине толком не применяются.

(Ответить) (Уровень выше)


(Читать комментарии) -