Пес Ебленский [entries|archive|friends|userinfo]
rex_weblen

[ website | Наши рисуночки ]
[ userinfo | ljr userinfo ]
[ archive | journal archive ]

Links
[Links:| update journal edit friends fif tiphareth recent comments ]

Алгебраические поля [Feb. 23rd, 2025|04:29 pm]
[Tags|, , , , , ]
[Current Mood | sleepy]
[Current Music |The Rainfall Years - Disautumn]



Учебники


текст
Я все же решил двигаться дальше по алгебраическому пути. Моя цель теория Галуа Гротендика. Но я решил начать с повторения классической теории Галуа. В качестве основного учебника для повторения я выбрал книгу «Field Theory» Стивена Романа. Стивен Роман, как я понял, много лет проработал криптографом в ЦРУ. А когда вышел на пенсию решил монетизировать свои знания, и написал огромное количество учебников про все на свете включая складные ножи и написание макросов для Microsoft Office на языке Visual Basic. Не знаю как там с макросами, но в алгебре Роман разбирался хорошо, поэтому получилось нажористо. Недостатки у этой книги вытекают довольно очевидные. Это во первых определенная некультурность, когда нет четкой связи с традицией Бурбаков, Гротендика и Миши Вербицкого. Из этого вытекают некоторые странности, например, что в одной главе может предполагаться знакомство с теорией категорий, и не предполагаться знакомство с комплексными числами. И из нажористости иногда следует определенная занудность, когда текст превращается просто в кучу теорем без четкой цели и назначение. Но у этого учебника есть и плюсы: та же нажористость, много теорем, задач и результатов. Многие интересные результаты даны именно в задачах. Меня очень подкупило, что глава про историю Галуа начинается с Ньютонна. А сама тема с теорией Галуа начинается не с конкретных примеров, а с обсуждения связности Галуа в общекатегорном контексте. Меня все это тут очень подкупило. Сам учебник Романа устроен довольно своеобразным образом. Вначале идет все про поля и их расширения, но без теории Галуа как таковой. Пока я закончил разбирать только эту часть. Поэтому этот пост называется «Алгебраиеские поля», а не «Теория Галуа».

Однако, если бы я преподавал этот курс, то скорее всего, я не стал бы использовать Романа в качестве базового учебника из-за приведённых выше недостатков. В качестве альтернативы, я бы посоветовал учебник Патрика Моранди «Fields and Galois Theory», который устроен ровно противоположным образом, то есть начинается с элементарной теории Галуа и потом постепенно движется к бесконечным расширением Галуа и несепарабельным расширениям вводя необходимые алгебраические концепции по мере необходимости. Этого Моранди часто используют в США. И кажется подход Моранди, начинать с конкретных конструкций, которые с одной стороны достаточно просто, чтобы их можно было пощупать, а с другой являются полноценными объектами теории, а потом шаг за шагом расширять теорию — более педагогично. Другой учебник — это текс Фалько Лоренца «Algebra I: Fields and Galois theory». Его советовал кто-то из местных завсегдатаев. Этот учебник начинается с построений циркулем и линейкой как мотивировки для развития последующей алгебраической теории. Также этот учебник интересен тем, что там содержится доказательство трансцендентности чисел пи и е, само по себе довольно элементарное, но при этом довольно запутанное и не интуитивное. Более прямолинейных доказательств похоже нет. Наконец, весь этот материал находится во втором томе алгебры Бурбаки, а также во второй части Алгебры Ланга «Алгебраические уравнения». В целом Алгебра Ланга и, наверное, Бурбаков более продвинутый источник чем все остальные. Например у Ланга также обсуждаются гомологии Галуа и расширение колец. Поэтому, я думаю, что Лангу тоже стоит уделить внимание.

Зачем изучать «алгебраические поля»? Собственно как основу для вышеупомянутой Теории Галуа, а также еще в большей мере для алгебраической теории чисел. Зачем изучать Теорию Галуа я расскажу как-нибудь в следующий раз. А в теории чисел есть, например, такая тема как локальные поля классов. Но там уже нужны формально действительные поля и расширения колей. Поэтому нужно читать Ланга.

Для большинства остальных приложений кроме алгебраической теории чисел, кажется хватит того как эта тема, во всяком случае мне, преподавалась в рамках курса абстрактной алгебры. Я как помню, там в основном в качестве примеров разбирались алгебраические расширения рациональных чисел и конечных полей. То есть основное внимание уделялось конечным и сепарабельным расширениям. Тут же большое внимание уделяется также трансцедентальным и несепарабельным расширениям. Не сепарабельные расширения, могут существовать только у бесконечных полях целой характеристики. Поэтому понятно, что их область применения довольно специфична, И глава про несепарабельные расширения мне показалась самой занудной.
Из прериквизитов для изучения этой темы «алгебраические поля», я бы отметил только линей и элементарную абстрактную алгебру, типа понимания групп и колец. Чтобы разобрать темы «построения компасом и линейкой» и «Трансциендентность чисел пи и е» нужно знать что-то из геометрии и анализа соответственно, но скорее на школьном уровне.

«построения компасом и линейкой» и «Трансциендентность чисел пи и е» — это два гештальта, которые я хотел закрыть. Я давно про это слышал, но некогда не было ни сил, ни мотивации в этом разобраться. Когда я сел за циркуль и линейку, то я решил, что это теорию можно улучшить, если делать все построения на сфере Римана, а не на плоскости, и переносить их куда надо стереографической проекцией. Это позволило бы заменить точки, прямые и окружности на один большой класс «обобзенных окружностей», представляемых классами эрмитовых матриц размера 2×2. Оказывается, эту идею уже разбирали до меня, например тут. И, что удивительно, я узнал что, чтобы рисовать окружности на сфере вместо обычных построении на плоскости, существует особый инструмент, известный как инструмент Ленарта, и он изобретен в Венгрии! Вот такое интересное открытие! Связь с алгебраическими полями, тут такая, что геометрические построения ведут к появлению полю конструируемых чисел. Это подполе действительных чисел, содержащая все расширения второго порядка своих подполей. С помощью него можно доказать неразрешимость многих классических задач начертательной геометрии. Что же касается трансцендентальности чисел e и пи, оно нужно, чтобы разобраться с квадратурой круга. Как я уже писал выше, доказательство этого факта довольно элементарное, но мутное, в лучших традициях теории чисел. Основной смысл в его изучении, что его можно использовать как мотивировку для изучения алгебраических целых, то есть алгебраических чисел, минимальные многочлены которых имеют целые коэффициенты над рациональными числами. Но эта тема имеет больше отношения к теории чисел, чем к алгебре.



Инструмент Ленарта заменяет циркуль и линейку на сфере


Eще тут я познакомился с таким понятием как пространство с зависимостями. Самым известным примером пространства с зависимостями, являются линейные (векторные) пространства с собственно линейными зависимостями. И если у пространства выполняются аксиомы зависимости, то там верны сразу почти все теоремы пол базис и размерность линейных пространств. Роман вводит понятие алгебраической зависимости для расширения поля. И с помощью этой теории определяет понятия базиса и степени трансцендентности, по аналогии с базисом и размерностью линейного пространства. Мне интересно, какие еще структуры кроме линейных пространств и расширений полей обладают отношениями зависимости? Вначале, я думал про логику с не-избыточными наборами аксиом вместо базисов, и теориями вместо линейных оболочек, то есть логическая зависимость как выводимость, но там не выполняется четвертая аксиома замены. Вторая аксиома имеет — это компактность и в топологическом и в логическом понимание. Интересно, если понимать логическую зависимость как-то более сложно, как что-то остюда, можно ли там найти отношение зависимости с выше приведенным определением?

В конце первой части Роман дает два интересных результата про простые трансцендентные расширения. Первый — теорема Люрота. Она говорит, что любое подрасширение простого трансцендентного расширения, тоже будет простым и трансцендентным вниз. Доказательство там довольно муторное, с делимостью многочленов и их производных. Не уверен есть ли какой-то учебный смысл в том, чтобы его разобрать. Второе утверждение читателям предлагается разобрать самостоятельно. А именно то, что группа автоморфизмов поля рациональных функций с одной переменной K(x), устроена как фактор GL(2,K) по K_*I. Этого факта я тоже не знал.
Link70 comments|Leave a comment

navigation
[ viewing | most recent entries ]