Пес Ебленский [entries|archive|friends|userinfo]
rex_weblen

[ website | Наши рисуночки ]
[ userinfo | ljr userinfo ]
[ archive | journal archive ]

Links
[Links:| update journal edit friends fif tiphareth recent comments ]

Коммутативная Алгебра [May. 9th, 2025|11:56 pm]
[Tags|, , , , , , ]
[Current Mood | worried]
[Current Music |Moving Gelatine Plates]

Основной моей целью сейчас является чтение книги «Теории Галуа» Барсу и Джанилидзе. Там речь идет не только о расширениях Галуа полей, но и коммутативных колец вообще. Поэтому я решил повторить коммутативную алгебру вообще. Я обратил внимание на новый учебник Ферретти, потому что там тоже упоминаются расширения Галуа колец. И я решил, что было бы интересно сравнить то что написано в двух этих книгах


Учебники

текст
Но перед тем как делиться впечатлениями, я расскажу про коммутативную алгебру вообще. И какие вообще есть опции для ее изучения? Обычно упоминается классический учебник Атьи и Макдональда. Он неплохой и довольно легок в употреблении. Но я учился по более новому учебнику Альтмана и Клеймана. Этот учебник пытается быть обновлённой версией Атьей-Макдональды и отличается от своего предшественника более активным использованием теории категорий. К сожалении в то время я был очень замотан, и у меня не осталось хороших заметок, поэтому я хотел сделать себе новый и выбрал себе для этого учебник Ферретти. Да я уже забыл многое. чем не пользовался активно. И честно говоря, не уверен что могу адекватно сравнить вышеупомянутые учебники. Но Ферретти точно более объемный. И мне понравилась организация там тем. Там также много примеров и задачек, включая и довольно продвинутые. Многие задачки основаны на вопросах с Mathoverflow и сразу идут в комплекте с ссылками на этот ресурс. Из более продвинутых учебников стоит отметить текст Эйзенбада, который написан с особым взглядом в сторону алгебраической геометрии. Он очень объемный на его усвоение может потребоваться относительно много времени. Также любителям алгебраической геометрии, особенно тем, кто собирается учить ее по классической книге Харстхорна стоит посоветовать книгу Матсамуры, потому что, как я слышал, Хартсхорн часто ссылается именно на эту книгу. Другой учебник более продвинутый чем Ферретти — это неизданный текст Кларка. Очень подробный и Ферретти на него часто ссылается. Там есть интересные вещи, которых кажется нет в других местах. Например, там есть глава про двойственность Серра-Суона для векторных расслоений. Хотя мне сложно сформулировать для кого конкретно написан этот учебник. Может быть для любителей дифференциальной геометрии или комбинаторики (или тут скорее исключающае).

Теперь можно попробовать ответить на вопрос, зачем учить коммутативную алгебру. Как можно уже понять из вышесказанного основным потребителем результатов коммутативной алгебры является алгебраическая геометрия. Другим потребителем является алгебраическая теория чисел. В то же время коммутативная алгебра в теории чисел в определенном смысле проще, так как там почти все вопросы решаются для так называемых Дедекиндовских колец. Еще одна область применения — это так называемая алгебраическая комбинаторика. Кажется, что особый синергетический эффект дает совместное изучение коммутативной алгебры и комплексного анализа. Потому что именно эта комбинация открывает путь к классической алгебраической геометрии и алгебраической комбинаторики. Также не стоит забывать про так называемую вычислительную алгебру. Она имеет много приложений в той же комбинаторики, но не только в ней, а также в технике и статистики. По этой теме есть довольно доступная книжка Кокса. Раньше чистые математики относились к этим вычислительным методам свысока. Но сейчас они нашли применение и в серьезных темах, связанных с чистой математикой.

Из пререквизитов в первую очередь стоит отметить обычную абстрактную алгебра. В том числе, кажется нужны и тензорные произведения из мультилинейной алгебры. Также некоторые учебники в качестве пререквизитов упомянают теорию Галуа. Она нужны как раз в вопросах связанных с расширениями колец и алгебраической теорией чисел.

Что же касается Ферретти, так он как раз очень подробно пишет про расширения колец и теорию чисел. Перед этим у него есть глава при вычислительные методы, которая включает в себя разделы про дискриминант и резольвенту, тоже темы близкие к Теории Галуа. Потом он определяет целостное расширение кольца. Идея довольно простая: для каждого целостного кольца можно построить поле частных, а это поле алгебраически замкнуть. Тогда корни многочленов с коэфециентами в исходном кольце будут составлять подкольцо этого алгебраического замыкания, и это и будет целостное расширение. Если начать с обычных целых чисел, то мы получаем алгебраические целые. Ферретти довольно подробно разбирает разные вариации на тему алгебраических целых. Эта линия развивается очень изящно в теорию связанную с геометрией решеток в R^2. Но это уже скорее алгебраическая теория чисел. И сюда же относится, то что Ферретти пишет про теорию Галуа. То есть, можно изучать «алгебраические целые», которые попали в какое-то расширение Галуа. То есть это теория чисто Для дедекиндовских колец. Также он Феррети касается другой важной для алгебраической теории чисел темы, а именно метрического пополнения колец, что ведет p-адическим числам и целым. Поэтому, я думаю, что книжку Ферретти можно было бы рекомендовать как учебник любителям алгебраической теории чисел. А также, я думаю, что это книга могла бы быть хорошим учебником для курса «Коммутатитвная Алгебра и Теория Чисел», который Миша придумал для второго курса матфака.

Вообще когда я познакомился с учебником Ферретти мне показалось, что все тему тут можно хорошо разделить на базовые, вдохновлённые алгебраической теорией чисел и вдохновлённые алгебраической геометрией. Тут есть и темы связанные с алгебраической геометрией. Это основы элементарной алгебраической геометрии, например, топология Зариского и теорема Гильберта о нулях. Кроме того у него есть интересная тема, что координатное кольцо гладкой алгебраической кривой является Дедекиндовским, о чем не грех упоминать после столь глубокого для учебника алгебра погружения в теорию чисел. Это на самом деле интересная связь между алгебраической геометрией и абстрактной алгебраической теорией чисел. Дальше Ферретти пишет про теорию размерности и т. н. локальную структуру коммутативных колец. Я так понял, идея последней главы — получить чисто алгебраический инструмент измерения не-гладкости определенного алгебраического многообразия.

Еще одна тема про которую я не упомянул, это т. н. гомологические методы в коммутативной алгебре. У Эйзенбада этой теме посвящен большой раздел, и поэтому эта книга такая длинная. У Ферретти про это дело целый второй том. И кажется его можно использовать и как учебник гомологической алгебры.

Но я решил провести определенную ревизию того что мне нужно, и того что я читаю. И я понял что большая часть книжки Феррите, почти вся ее алгебраическая теория чисел и элементарная алгебраическая геометрия мен не очень полезна. А основной инструмент, которым пользуются Барсу и Джанилидзе — это т. н. спектр Пирса. И про спектр Пирса я знаю одну очень хорошую книжку. С другой стороны, я все-таки настаиваю, что спектр Пирса и смежные темы все же тоже относятся к Коммутативной алгебре, но это какая-то совсем другая инопланетная ветка довольно далекая от классической теории чисел и алгебраической геометрии. Из алгебраических прериквизитов, кажется, там нужно только хорошо разбираться в радикальных идеалах и локализации. Иногда эти темы включают в простой курс абстрактной алгебры, а иногда включают в курс коммутативной алгебры. В частности, они были в первой главе Феррети. Я как раз успел довольно подробно разобрать первые две главы. А дальше я решил не разбирать, потому что мне это показалось слишком сильным ответвлением в сторону от моей цели. Тем не менее я считаю, что оба тома Ферретти — учебники довольно высокого уровня. Я бы хотел бы когда-нибудь к ним вернуться для повышения общего уровня математической грамотности. А также я рекомендовал бы первый учебник для курса «Коммутатитвная Алгебра и Теория Чисел».
Link178 comments|Leave a comment

navigation
[ viewing | most recent entries ]