Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет Misha Verbitsky ([info]tiphareth)
@ 2015-03-16 08:19:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Настроение: tired
Музыка: Drudkh - КРОВ У НАШИХ КРИНИЦЯХ
Entry tags:hse, math, mccme

требуют духовных скреп и обязательного клизьмования
Тем временем студенты выложили программу по математике
и предложения по реформированию матфака
:

http://vk.com/mathhse?w=wall-65080714_247

По мне, недостаточно радикально, но в качестве
первого шага к реформированию сойдет.

В списках рассылки уже кипят говна, преподаватели возмущаются
и требуют духовных скреп и обязательного клизьмования.

Самое хорошее вот.

Дорогие коллеги,

Очень радуюсь факту появления вашего письма и тому, что проблемы
бакалавриата выходят на обсуждение --- оно, безусловно, необходимо.

Думаю, что процесс обсуждения не может быть коротким, поэтому
прошу разрешения поделиться самым первым впечатлением --- для
начала дискуссии, вовсе не в качестве окончательного суждения.

Как вы знаете, я читаю курс третьеурсникам и старше (хотя изредка
приходят студенты и младше),
а на младших курсах веду семинар. Среди подписавших письмо и
составителей программы с удовольствием вижу нескольких слушателей моих
курсов и семинаров. Для них не будет, полагаю, болшим сюрпризом то,
что пишу дальше.

Из года в год вижу серьезную проблему:

СТУДЕНТЫ НАШЕГО ФАКУЛТЕТА СОВСЕМ НЕ ЗНАЮТ КЛАССИЧЕСКОГО АНАЛИЗА.

Не вхожу в подробный разбор, ограничусь тремя конкретными примерами.

Вопрос 1: Найдите преобразование Фурье распределения Коши
(конкретно \int_R (\exp(i\lambda x) (1+x^2)^{-1}dx, \lambda
вещественно)

Вопрос 2. Сходится ли интеграл \int_R J_0^2(x) dx, где J_0 --
стандартная функция Бесселя?

Вопрос 3. Найдите асимптотику интеграла

\int_{-1}^1 \exp(ikx^2) dx

при k \to\infty.

Сколько времени вам нужно, чтобы ответить на эти вопросы?

Замечу, что первый --- совершенно стандартный,
второй --- просто детский, третий --- несложный и тоже стандартный,
при этом с ОЧЕНЬ важными
разветвлениями/обобщениями [за некоторые из которых Peter Debye
получил нобелевскую премию по...химии].

И если первый требует, скажем, трех строк вычисления, то второй и
третий решаются одной строкой на двоих.

Из составленной вами программы классический анализ исключен вовсе.
Мейду тем, знать его необходимо математику, работающему в самых
разных областях.

Про дифференциальные уравнения. Когда готовился читать их на мехмате
6 лет тому назад, советовался с коллегами, в частности, с Юрием Чинкелем, бывшим
тогда деканом математического факультета NYU и занимавшим одновременно
кафедру Гауссa в Геттингене.

http://de.wikipedia.org/wiki/Yuri_Tschinkel

Его комментарий о курсе в стиле Арнолда (с акцентом на
качественную теорию, рисование фазовых портретов и т. п.)
я не буду здесь приводить, а перейду к его совету
мне как лектору (по памяти):

------
Идеальный современный курс дифференциальных уравнией --- это
"bag of tricks". Работаюсчий математик постоянно встречается с некоторыми
совершенно конкретными обыкновенными дифференциальными уравнениями.
Их он должен уметь решать и хорошо знать.

Какие ето конкретные уравнения? Как минимум, я назвал бы
гипергеометрическое, Бесселя, уравнения типа Штурма-Лиувилля,
приводящие к классическим ортогональным многочленам.

Курс анализа --- традиционно слабое место Независимого. Ето связано,
думаю, среди прочего, и с тем, что, до появления матфака, студенты
НМУ, в большинстве своем, параллельно учились на мехмате (реже --на
физтехе/других факультетах МГУ/МГТУ/другое). Курс анализа на мехмате
имеет много недостатков, но изучение конкретных важных примеров и
методов в нем обычно есть. В НМУ этого не было и нет.

Где и когда, по вашему мнению, дорогие коллеги, должны студенты
матфака познакомиться с обьектами и техникой классического анализа, с
которыми математик живет потом всю свою жизнь?

* * *

(я убрал подпись и перевел в кириллицу; все ошибки мои).

Не удержусь пожалуй, и воспроизведу мой ответ на письмо коллеги.

> STUDENTY NASHEGO FAKULTETA SOVSEM NE ZNAJUT KLASSICHESKOGO ANALIZA.

Молодцы! Правильно делают, надо беречь мозги.

Также они не знают соотношений Адема и классификации
йордановых алгебр, а это не менее важные предметы, 
хотя тоже экзотические. Все факты выучить невозможно, но надо
хорошо владеть парадигмами, позволяющими быстро осваивать
экзотику, если понадобится.

> Ne vhozhu v podrobnyj razbor, ogranichus' tremja konkretnymi primerami.
>
> Vopros 1: Najdite preobrazovanie Fourier raspredelenija Cauchy. (konkretno
> \int_R (\exp(i\lambda x) (1+x^2)^{-1}dx, \lambda veschestvenno).
>
> Vopros 2. Shoditsja li integral \int_R J_0^2(x) dx, gde J_0 --
> standartnaja funktsija Besselja?
>
> Vopros 3. Najdite asimptotiku integrala
>
> \int_{-1}^1 \exp(ikx^2) dx

А зачем это нужно знать? Я не разу не видел, чтобы
в нормальной математической статье (в архиве.орг, 
например) упоминались функции Бесселя. И не уверен, 
что знаю того, кто их видел. 

Такие статьи, конечно, бывают, но применимость функций
Бесселя не шире, чем применимость каких-нибудь
луп Муфанг, которых никто в программу не включает.

(Классический) анализ - изолированная,
весьма узкая и лишенная применений наука, которая 
кроме выдающегося индекса взаимоцитирования, и обилия
статей с названиями "об одном свойстве дифференциального
уравнения", ничем особенно не замечательна.
По-моему, из всего [классического] анализа математику надо знать только
главы Зорича, помеченные звездочкой (там страниц 100), 
все остальное если и понадобится (что маловероятно), 
всегда можно на месте подучить.

Нужно преподавать такие вещи, без которых невозможно
понимать большое число математических наук, а такие вещи,
без которых можно обойтись, нужно выкинуть из программы,
там и так слишком много всего.

Конечно, если студенту придется ехать в Нигерию,
где математиков примерно столько, сколько во Франции,
и (почти) все занимаются классическим анализом, классический
анализ необходимо выучить заранее. Но мы не в Нигерии. 

Такие дела
Миша


(Читать комментарии) - (Добавить комментарий)


[info]tiphareth
2015-03-16 22:59 (ссылка)
>гипергеометрические уравнения и всякие GKZ примерно так же часто
>встречаются, как гамильтноновы или лагранжевы системы

да, это само собой

но непонятно, что про них можно сказать второкурснику
(хотя то, что на матфаке никто из студентов толком не знает про KZ,
ассоциаторы и башню тейхмюллера-гротендика, ужасно)

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]pet531
2015-03-17 01:50 (ссылка)
а я рассказывал на зимних, кстати.
про Бесселя тоже не знает, и это столь же ужасно.
хотя к первым двум курсам всё это отношения не имеет, конечно.

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]kaledin
2015-03-17 03:07 (ссылка)
>и это столь же ужасно

Да нет же. Функции Бесселя это, если я правильно понимаю, что-то про то, как явно выписать базис в каком-то там представлении. Нафига оно нужно, бог весть. Что-то давпопрошедшее. Наука про Гротендика-Техмюллера, наоборот, совсем несделанная, и очень интрирующая.

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]pet531
2015-03-17 03:33 (ссылка)
Функции Бесселя это не наука вообще. Это функции, как x/(1-e^(-x)), много где встречаются. Если их не знают, значит не видели ни одну из наук, где они есть.

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]tiphareth
2015-03-17 03:38 (ссылка)
и слава богу, тащемта, что не видели
есть вещи, которые лучше развидеть сразу же

(Ответить) (Уровень выше)


[info]kaledin
2015-03-17 04:43 (ссылка)
Ок, я их не знаю. Вот совершенно серьезно не знаю. И че? Кто теперь профнепригоден -- я, или те, кто их впаривает в обязательный курс?

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]pet531
2015-03-17 05:11 (ссылка)
Я думаю, что вы оба вполне профпригодны.

Я не про обязательну программу, я отвечал на Мишин коммент про Гротендика-Тейхмюллера. Функции Бесселя в обязательной программе для первых двух курсов я не стану защищать, да и Буфетов этого не делает, если дальше читать переписку.

(Ответить) (Уровень выше)


(Читать комментарии) -