Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет Misha Verbitsky ([info]tiphareth)
@ 2017-02-20 03:16:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Настроение: tired
Музыка:Can - Live at City Hall Birmingham 1974-02-10
Entry tags:hse, math, mccme

Комплексно-аналитические пространства: Усачева, 6, курс по субботам, 17:00
Решил воспользоваться тем, что билеты Брюссель-Москва
стоят $80 в один конец, и прочесть курс комплексной геометрии.
Поскольку оно самолетом из Брюсселя, курс читается
по субботам, Усачева 6, 17:00, комната 306. Начало
25 февраля.

Пожалуйста, сообщите сие всем, кто может быть заинтересован.

Если придет много народа, я, наверное, буду делать его
с задачками, в обычном духе, но скорее всего не понадобится.

Ссодержание курса, если вкратце, сводится к
"рассказать теорему Чжоу о том, что всякое
комплексное подмногообразие в проективном
многообразии алгебраично", но по дороге расскажу
какие-то куски многомерного комплексного анализа;
какие именно - зависит от состава участников.

* * *

Комплексно-аналитические пространства

Теория комплексно-аналитических пространств
параллельна комплексной алгебраической
геометрии: почти все понятия алгебраической
геометрии имеют комплексно-аналитические аналоги,
но их доказательства существенно отличаются.
Венцом этой науки является теорема Чжоу,
утверждающая, что комплексные подмногообразия
проективного пространства алгебраичны.
Я расскажу введение в многомерный комплексный
анализ для студентов, освоивших ТФКП, основы
топологии и анализа на многообразиях, остановлюсь
на локальной параметризации комплексных многообразий
(комплексно-аналитический аналог леммы Нетер о
нормализации) и закончу теоремой Чжоу. Если
хватит времени, я расскажу про когерентные
пучки и конструкцию нормализации по Ока.

Основные факты я напомню, но без знакомства
с основами комплексного анализа, анализа на
многообразиях и алгебры (в том числе и
коммутативной) будет непонятно.

0. Пучки, многообразия, комплексные многообразия,
голоморфные функции, многомерная формула Коши.

1. Подготовительная теорема Вейерштрасса.
Теорема Вейерштрасса о делимости.
Теорема Ласкера о нетеровости кольца ростков
голоморфных функций.

2. Комплексно-аналитические множества и комплексно-аналитические
пространства. Локальная параметризация комплексно-аналитических
многообразий (лемма Нетер о нормализации).

3. Теорема Реммерта о собственном отображении
и теорема Реммерта-Штейна о продолжении. Теорема Чжоу.

4* Когерентные пучки в аналитической категории. Теорема Ока.

5* Нормальные комплексно-аналитические пространства.
Нормализация.

6* Пучки Монтеля. Конечномерность когомологий когеретных
пучков на компакте по Гротендику.

Подробности можно найти в учебнике
Демайи https://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf
"Complex analytic and differential geometry".

Также:
A. Grothendieck, Theoremes de finitude pour la
cohomologie des faisceaux, Bull. Soc. Math. France 84
(1956), 1-7.

Gunning, R.C., Rossi, H. [1965] Т Analytic functions of
several complex variables.

Grauert, H., Remmert, R. [1984] Т Coherent analytic
sheaves.

Реммерт Р., Петернел Т., Грауэрт Г. Комплексный анализ -
многие переменные - 7 (1996, ВИНИТИ)

Грауэрт Г., Реммерт Р. - Теория пространств Штейна

* * *

Если кто-то, будучи студентом НМУ, не имеет
пропуска в Вышку, свяжитесь со мной либо с Галиной
Борисовной. Если вы хотите, чтоб я сделал вам пропуск,
сообщите мне имя-отчество. Но в теории, на матфак
должны пускать с пропуском из любой академической
конторы или студбилетом чего-нибудь осмысленного.

Привет



(Добавить комментарий)


[info]oort
2017-02-20 06:21 (ссылка)
сейчас схема прохода такая:

делается заренее служебка на курс один раз (без списка и имен)
и на него пускают всех по документу и способности назвать мерпориятие, на которое идут

т.е. необходимости делать каждому пропуск нет

(Ответить) (Ветвь дискуссии)


[info]tiphareth
2017-02-20 06:26 (ссылка)
а по субботам оно работает?

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]oort
2017-02-20 06:45 (ссылка)
ага

(Ответить) (Уровень выше)


[info]tiphareth
2017-02-20 06:34 (ссылка)
а кто пишет служебку? На всякий случай, попросил Веру, чтоб сделала

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]zugololeron
2017-02-20 06:58 (ссылка)
Она няшная?
Вы ебетесь?

моя верочка
съебала от меня
в другой город *(

(Ответить) (Уровень выше)


[info]polytheme
2017-02-20 09:05 (ссылка)
а в качестве документа паспорт катит ?

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]oort
2017-02-20 13:50 (ссылка)
да

(Ответить) (Уровень выше)


(Анонимно)
2017-02-20 07:27 (ссылка)
видео будет?

(Ответить) (Ветвь дискуссии)


[info]tremere
2017-02-20 08:06 (ссылка)
ну или выкладывание листочков сюды

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]tiphareth
2017-02-20 13:18 (ссылка)
это безусловно

(Ответить) (Уровень выше)


[info]polytheme
2017-02-20 09:05 (ссылка)
Я хочу, угу.
А чего, для Chow's theorem не нужны пучки ? Ни фига себе.

(Ответить) (Ветвь дискуссии)


[info]polytheme
2017-02-20 09:08 (ссылка)
А насколько время жесткое, оно совсем не шевелится ?

(Ответить) (Уровень выше) (Ветвь дискуссии)


[info]tiphareth
2017-02-20 13:19 (ссылка)
да нет, можно поменять, на первом занятии об этом можно поговорить

(Ответить) (Уровень выше)


[info]topos
2017-02-20 18:19 (ссылка)
Ну, на уровне терминологии пучки нужны в современном изложении, но сам Чжоу опубликовал результат, когда "теории пучков" еще не существовало (строго говоря, в 1949 году, и пучки появились в печати в Séminaire Henri Cartan в том же году, кажется).

(Ответить) (Уровень выше)


(Анонимно)
2017-02-20 10:52 (ссылка)
Вернись в семью, скотина!

(Ответить)


[info]wieiner_
2017-02-20 14:37 (ссылка)
жаль, приехать не могу (еще и шахматисты могут побить к тому же). если будете делать видео, заебашьте звук нормальный погромче микрофон и камерой крутите на всю доску.

спасибо.
извините, за наглость.

(Ответить)


[info]v_r
2017-02-20 14:54 (ссылка)
А когда ты в Москву прилетаешь? Очень надо пообщаться (можно в четверг перед/после семинара, или в пятницу-субботу)

(Ответить) (Ветвь дискуссии)


[info]tiphareth
2017-02-20 16:12 (ссылка)
в четверг утром
с удовольствием и в четверг (после часа-двух), и в пятницу-субботу

(Ответить) (Уровень выше)


[info]apkallatu
2017-02-20 16:20 (ссылка)
классная программа, хотел бы я выучить комплексный анализ по ней

мне в этой науке очень нравится принцип Ока, что на штейновых многообразиях
категории голоморфных расслоений и топологических эквивалентны. Громов потом это как-то обобщил с помощью h-principle

(Ответить)


[info]phexel
2017-02-20 20:36 (ссылка)
Очень здорово!

(Ответить)


[info]yfrolov.livejournal.com
2017-02-22 03:33 (ссылка)
Вы, Михаил Сергеевич, натурально святой. Какая же досада, что я -- говно и всего этого понять не могу :-(

(Ответить) (Ветвь дискуссии)


[info]wieiner_
2017-02-22 04:58 (ссылка)
учись или в армии научат.

https://www.youtube.com/watch?v=MHcdxzjVboo

(даже там Мишу в-пример ставят)

ухожу-ухожу сам. пока всем.

(Ответить) (Уровень выше)