Войти в систему

Home
    - Создать дневник
    - Написать в дневник
       - Подробный режим

LJ.Rossia.org
    - Новости сайта
    - Общие настройки
    - Sitemap
    - Оплата
    - ljr-fif

Редактировать...
    - Настройки
    - Список друзей
    - Дневник
    - Картинки
    - Пароль
    - Вид дневника

Сообщества

Настроить S2

Помощь
    - Забыли пароль?
    - FAQ
    - Тех. поддержка



Пишет Misha Verbitsky ([info]tiphareth)
@ 2017-02-27 23:04:00


Previous Entry  Add to memories!  Tell a Friend!  Next Entry
Настроение: sick
Музыка:Pink Floyd - DARK SIDE OF THE SKY
Entry tags:hse, math, mccme

комплексно-аналитические пространства: лекция 1
Выложил, кстати, слайды и задачи к курсу по комплексным пространствам,
и сделал курсу страничку
http://bogomolov-lab.ru/KURSY/CM-2017/
http://verbit.ru/MATH/CM-2017/cm-slides-01.pdf
http://verbit.ru/MATH/CM-2017/listki-cm-01.pdf

На лекции были в основном пучки, но определение
комплексного пространства я успел дать. В следующий
раз буду рассказывать про ростки пучков, ростки
многообразий, вот это все.

Привет



(Читать комментарии) - (Добавить комментарий)


(Анонимно)
2017-03-01 16:56 (ссылка)
"скалярное роизведение" даже по своему названию производит скаляр

вообще, формально, скалярное произведение - это
всего лишь положительно определенная симметрическая билинейная форма на векторном пространстве
k: VxV->R
каждой упорядоченной паре векторов из V ставит в соответствие число (скаляр)

про скалярное произведение вектора на оператор никогда не слышал и не знаю что это такое

моожно говорить о произведении вектора и матрицы
или о действии оператора на вектор

но причём здесь это? такую цепочку вопросы и ответов можно продолжать бесконечно. это абсолютное пустое занятие. если бы ты знал алгебру хотя бы на уровне первого симестра мехмата, у тебя бы возникали более содержателньые вопросы.

(Ответить) (Уровень выше) (Ветвь дискуссии)


(Анонимно)
2017-03-01 18:48 (ссылка)
>про скалярное произведение вектора на оператор никогда не слышал и не используется в "Лемма Хаара", например.


(Ответить) (Уровень выше) (Ветвь дискуссии)


(Анонимно)
2017-03-01 22:34 (ссылка)
и что? где там "скалярное умножение вектора на оператор"?

(Ответить) (Уровень выше)


(Читать комментарии) -